热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

从学习Paddle开始学习深度学习(一)

从学习Paddle开始学习深度学习(一)|深度学习的黄金时代已经到来开场白首先给Baidu打一波广告。Paddle深度学习平台,你值得学习。它的优

深度学习的黄金时代已经到来

开场白

首先给Baidu打一波广告。Paddle深度学习平台,你值得学习。

它的优点

  • 灵活性:PaddlePaddle支持广泛的神经网络结构和优化算法,很容易配置复杂的模型,如基于注意力(Attention)机制或复杂的内存(Memory)连接的神经机器翻译模型。(Attention和Memory参考阅读: 深度学习和自然语言处理中的attention和memory机制 、 深度学习:推动NLP领域发展的新引擎 )
  • 高效:在PaddlePaddle的不同层面进行优化,以发挥异构计算资源的效率,包括计算、内存、架构和通信等。例如:
    • 通过SSE/AVX内部函数,BLAS库(例如MKL,ATLAS,CUBLAS)或定制CPU/GPU内核优化的数学运算。
    • 高度优化循环网络,以处理可变长度序列,无需填充(Padding)。
    • 优化高维稀疏数据模型的本地和分布式训练。
  • 可扩展性:PaddlePaddle很容易使用多个CPU/GPU和机器来加快你的训练,通过优化通信实现高吞吐量、高性能。
  • 连接产品:PaddlePaddle易于部署。在百度,PaddlePaddle已经被部署到广大用户使用的产品或服务,包括广告点击率(CTR)的预测,大型图像分类,光学字符识别(OCR),搜索排名,计算机病毒检测,推荐等。

来自网络


初识

先做一个形象的比喻,Paddle就好比一台3D打印机,我们设计的神经网络就好比需要打印的模型,而我们的数据集就相当于原材料,把两者同时提供给这台打印机,经过一段时间就可以得到我们预期的产品--模型(Trained Model).

简言之,paddle 做的工作就是利用我们设计的模型和我们提供的数据 通过高性能的并行技术(CPU/GPU)来完成训练。

所以,我们在使用 Paddle 做深度学习时最基本的工作就是设计一个完美的模型并准备好数据。也就是要有以下几个文件:

  • trainer_config.py : 配置神经网络模型
  • data_provider.py : 数据提供
  • train.sh : 配置paddle训练的参数

安装

paddle提供了三种安装方式:

  • Docker 安装,非常便捷,但必须在Docker环境下部署。
  • deb 安装, 在Ubuntu下打包安装。
  • 编译安装 文档上写的有点复杂,其实很简单,先处理完一些依赖库,比如 MKL/BLASprotobuf 以及CUDA之类的(非GPU用户不用担心)。然后就是最基本的操作 make 之类了。每个用户都可以去尝试一下,可拓展性和可操作性都很强。

简单使用

1. 数据

可以分为如下两步:

  • 定义数据格式
  • 通过生成器和yield方式提供数据

以手写字MNIST作为例子

数据样例:

5;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.215686 0.533333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67451 0.992157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.070588 0.886275 0.992157 0 0 0 0 0 0 0 0 0 0 0.192157 0.070588 0 0 0 0 0 0 0 0 0 0 0 0 0 0.670588 0.992157 0.992157 0 0 0 0 0 0 0 0 0 0.117647 0.933333 0.858824 0.313725 0 0 0 0 0 0 0 0 0 0 0 0.090196 0.858824 0.992157 0.831373 0 0 0 0 0 0 0 0 0 0.141176 0.992157 0.992157 0.611765 0.054902 0 0 0 0 0 0 0 0 0 0 0.258824 0.992157 0.992157 0.529412 0 0 0 0 0 0 0 0 0 0.368627 0.992157 0.992157 0.419608 0.003922 0 0 0 0 0 0 0 0 0 0.094118 0.835294 0.992157 0.992157 0.517647 0 0 0 0 0 0 0 0 0 0.603922 0.992157 0.992157 0.992157 0.603922 0.545098 0.043137 0 0 0 0 0 0 0 0.447059 0.992157 0.992157 0.956863 0.062745 0 0 0 0 0 0 0 0 0.011765 0.666667 0.992157 0.992157 0.992157 0.992157 0.992157 0.745098 0.137255 0 0 0 0 0 0.152941 0.866667 0.992157 0.992157 0.521569 0 0 0 0 0 0 0 0 0 0.070588 0.992157 0.992157 0.992157 0.803922 0.352941 0.745098 0.992157 0.945098 0.317647 0 0 0 0 0.580392 0.992157 0.992157 0.764706 0.043137 0 0 0 0 0 0 0 0 0 0.070588 0.992157 0.992157 0.776471 0.043137 0 0.007843 0.27451 0.882353 0.941176 0.176471 0 0 0.180392 0.898039 0.992157 0.992157 0.313725 0 0 0 0 0 0 0 0 0 0 0.070588 0.992157 0.992157 0.713725 0 0 0 0 0.627451 0.992157 0.729412 0.062745 0 0.509804 0.992157 0.992157 0.776471 0.035294 0 0 0 0 0 0 0 0 0 0 0.494118 0.992157 0.992157 0.968627 0.168627 0 0 0 0.423529 0.992157 0.992157 0.364706 0 0.717647 0.992157 0.992157 0.317647 0 0 0 0 0 0 0 0 0 0 0 0.533333 0.992157 0.984314 0.945098 0.603922 0 0 0 0.003922 0.466667 0.992157 0.988235 0.976471 0.992157 0.992157 0.788235 0.007843 0 0 0 0 0 0 0 0 0 0 0 0.686275 0.882353 0.364706 0 0 0 0 0 0 0.098039 0.588235 0.992157 0.992157 0.992157 0.980392 0.305882 0 0 0 0 0 0 0 0 0 0 0 0 0.101961 0.67451 0.321569 0 0 0 0 0 0 0 0.105882 0.733333 0.976471 0.811765 0.713725 0 0 0 0 0 0 0 0 0 0 0 0 0 0.65098 0.992157 0.321569 0 0 0 0 0 0 0 0 0 0.25098 0.007843 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.94902 0.219608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.968627 0.764706 0.152941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.498039 0.25098 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

数据可拆分为 label 和 784 的一个浮点数一维向量。

定义数据格式

data_provider.py中,有两种方式定义输入数据格式

1. 通过装饰器直接定义

@provider(input_types=[dense_vector(784), integer_value(10)],cache=CacheType.CACHE_PASS_IN_MEM)

定义了一个稠密的784维向量和一个范围从0~10的整数。

或者可以有如下定义

@provider(input_types={
    'pixel': dense_vector(784),     
    'label': integer_value(10)
    },cache=CacheType.CACHE_PASS_IN_MEM
)

这样通过字典定义,可以方便标记和访问。

2. 通过init_hook间接定义

def initialize(settings, **kwargs):
    s = dict()
    s['data'] = dense_vector(784)
    s['label'] = integer_value(10)
    settings.input_types = s

@provider(init_hook=initialize,cache=CacheType.CACHE_PASS_IN_MEM)

通过init_hook方式更加灵活,可以动态修改输入的数据类型。另外,在init_hook方法中可以提前对settings进行配置或者动态添加一些参数,供后续工作使用。

关于两种方式的选择依据个人需求。

通过生成器和yield提供数据

yield方用法 具体查看Python文档

定义好数据格式后,就可以开始结合那个@provider装饰器提供数据了。

@provider(input_types=[dense_vector(784), integer_value(10)],cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, filename):
    with open(filename, 'r') as f:
        for line in f:
            label, pixel = line.split(';')
            pixels_str = pixel.split(' ')
            pixels_float = []
            for each_pixel_str in pixels_str:
                pixels_float.append(float(each_pixel_str))
            yield {"pixel": pixels_float, 'label': int(label)}

下面来介绍一下这个函数的一些内容:

  • settings:这是一个全局的配置。里面可以访问一些变量,尤其是我们在init_hook中动态添加的属性。
  • filename:显然,我们获取数据需要文件。这个file就是我们需要准备的训练集和测试文件。然而我们并不会主动去调用函数,一切调用交给了Paddle。那么我们怎么把数据提交给Paddle,Paddle又如何把数据以filename的方式交给上述的data_provider中的process 处理呢?

下面要引入另外几个特殊的文件

  • train.list 一个简单的文本文件,将训练文件的目录写进去,比如 data/mnist.txt
  • test.list 存放测试文件,内容同上。

这些文件处理好后,直接交给paddle,然后我们就可以在data_provider中对我们写进这两个文件里的训练文件和测试文件(data/mnist.txt) 进行读取操作了。

如上图:整个数据提供的顺序为:

  1. test.listtrain.list 提供给 Paddle
  2. Paddle 将test.listtest.list中的数据文件(如MNIST.txt) 传给 data_provider.py
  3. data_provider.py将数据分离成对应的input_types传递给Paddle
  4. Paddle 将 数据向量 和 trainer_config.py中的模型结合起来训练并测试模型。
补充
  • input_types:
    • dense_vector 表示稠密的浮点数向量.
    • sparse_binary_vector 表示稀疏的零一向量,即大部分值为0,有值的位置只能取1.
    • sparse_vector 表示稀疏的向量,即大部分值为0,有值的部分可以是任何浮点数.
    • integer_value 表示整数标签。
  • cache:
    • NO_CACHE :不缓存任何数据,每次都会从python端读取数据
    • CACHE_PASS_IN_MEM :第一个pass会从python端读取数据,剩下的pass会直接从内存里 读取数据。

2. 模型配置

还是以手写字为例

trainer_config.py 中 开始配置模型, 模型配置分三部分

  • 数据提供
  • 算法配置
  • 网络配置

首先

from paddle.trainer_config_helpers import *
数据提供
define_py_data_sources2(
    train_list='train.list',
    test_list='test.list',
    module='data_provider',
    obj=process,
    args={
        //
    }
)

这个函数可以向paddle配置数据输入。

  • module: Data Provider 的脚本文件名如data_provider对应 data_provider.py
  • obj:对应数据提供函数(含有yield)
  • args:为可选项,可以提供一些键值数据给init_hook函数作为函数调用的自定义参数。
算法配置
settings(
    batch_size=batch_size,
    learning_rate=0.001,
    learning_method=RMSPropOptimizer(),
    regularization=L2Regularization(8e-4)
)

这个用于配置深度神经网路的一些参数, 比如学习率,batch_size,以及正则化方法和学习方法。后面会对这些参数做详细的分析。

网络配置
  • 输入数据获取
data = data_layer(name='data', size=784)
label = data_layer(name='label', size=10)
  • 神经网络配置

最基本网络模型 -- Fully Connected Layer 全连接层

# 第一个全连接隐层 有 64 个神经元 激活函数为 Sigmoid 函数
full_layer = fc_layer(input=data, size=64, act=SigmoidActivation())

# 第二个全连接隐层 有 32 个神经元 激活函数为 ReLU 函数
full_2_layer = fc_layer(input=full_layer, size=32, act=ReluActivation())

# 输出层 有10个神经元, 激活函数为Softmax
output_layer = fc_layer(input=full_2_layer, size=10, act=SoftmaxActivation())

# 计算分类损失,并执行误差反向传播
cost = classfication_cost(input=output_layer, label=label)

# 输出
output(cost)

output 一般作为模型配置的结束点,没有output会导致paddle报异常的错误。

神经网络Layer还有很多种类,如 LSTM,CNN,RNN以及各种pool。会在以后的介绍中提到。

3. 训练

run shell scripts
   cfg=trainer_config.py
   paddle train \
   --cOnfig=$cfg \ # 模型配置
   --save_dir=$output_dir \ # 输出文件存储目录
   --trainer_count=64 \ # GPU个数或者CPU个数
   --log_period=1000 \ # 
   --dot_period=100 \ # 每一个period的输出dot的数量
   --num_passes=50 \ # 训练轮数
   --use_gpu=false \ # 是否使用GPU
   --show_parameter_stats_period=3000 \

run后paddle就会开始训练,深度学习的大门就开启了。


总结

Paddle 刚开源不久,确实存在一些问题,Baidu开发者也在不断更新完善(回复issue的速度贼快)。但熟悉后会觉得这个框架可用性很强。支持国产!


关于作者

  • 本科生 大二
  • email: victorchanchina@gmail.com
  • 方向 深度学习 并行计算 数据挖掘

关于更新

有时间就更新,学到了新东西就更新


作者:Vic_Chan
链接:http://www.jianshu.com/p/699692fdd446
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

推荐阅读
  • 从用户转型为开发者:一场思维升级的旅程 | 专访 StarRocks Committer 周威
    从用户转变为开发者,不仅是一次角色的转换,更是一场深刻的思维升级之旅。本次专访中,StarRocks Committer 周威分享了他如何在这一过程中逐步提升技术能力与思维方式,为开源社区贡献自己的力量。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • ZeroMQ在云计算环境下的高效消息传递库第四章学习心得
    本章节深入探讨了ZeroMQ在云计算环境中的高效消息传递机制,涵盖客户端请求-响应模式、最近最少使用(LRU)队列、心跳检测、面向服务的队列、基于磁盘的离线队列以及主从备份服务等关键技术。此外,还介绍了无中间件的请求-响应架构,强调了这些技术在提升系统性能和可靠性方面的应用价值。个人理解方面,ZeroMQ通过这些机制有效解决了分布式系统中常见的通信延迟和数据一致性问题。 ... [详细]
  • Docker网络基础探讨了如何通过高效的技术手段实现跨主机容器间的顺畅通信与访问。本文深入分析了Docker网络架构,特别是其在多主机环境下的应用,为Go语言开发者提供了宝贵的实践指导和理论支持。 ... [详细]
  • 利用Jenkins与SonarQube集成实现高效代码质量检测与优化
    本文探讨了通过在 Jenkins 多分支流水线中集成 SonarQube,实现高效且自动化的代码质量检测与优化方法。该方案不仅提高了开发团队的代码审查效率,还确保了软件项目的持续高质量交付。 ... [详细]
  • 本文推荐了六款高效的Java Web应用开发工具,并详细介绍了它们的实用功能。其中,分布式敏捷开发系统架构“zheng”项目,基于Spring、Spring MVC和MyBatis技术栈,提供了完整的分布式敏捷开发解决方案,支持快速构建高性能的企业级应用。此外,该工具还集成了多种中间件和服务,进一步提升了开发效率和系统的可维护性。 ... [详细]
  • 本题库精选了Java核心知识点的练习题,旨在帮助学习者巩固和检验对Java理论基础的掌握。其中,选择题部分涵盖了访问控制权限等关键概念,例如,Java语言中仅允许子类或同一包内的类访问的访问权限为protected。此外,题库还包括其他重要知识点,如异常处理、多线程、集合框架等,全面覆盖Java编程的核心内容。 ... [详细]
  • 本文深入探讨了数据库性能优化与管理策略,通过实例分析和理论研究,详细阐述了如何有效提升数据库系统的响应速度和处理能力。文章首先介绍了数据库性能优化的基本原则和常用技术,包括索引优化、查询优化和存储管理等。接着,结合实际应用场景,讨论了如何利用容器化技术(如Docker)来部署和管理数据库,以提高系统的可扩展性和稳定性。最后,文章还提供了具体的配置示例和最佳实践,帮助读者在实际工作中更好地应用这些策略。 ... [详细]
  • 优化后的标题:PHP分布式高并发秒杀系统设计与实现
    PHPSeckill是一个基于PHP、Lua和Redis构建的高效分布式秒杀系统。该项目利用php_apcu扩展优化性能,实现了高并发环境下的秒杀功能。系统设计充分考虑了分布式架构的可扩展性和稳定性,适用于大规模用户同时访问的场景。项目代码已开源,可在Gitee平台上获取。 ... [详细]
  • 深入理解Java事务编程:可串行化隔离级别的快照隔离机制解析
    深入理解Java事务编程:可串行化隔离级别的快照隔离机制解析 ... [详细]
  • 利用Redis HyperLogLog高效统计微博日活跃和月活跃用户数
    本文探讨了如何利用Redis的HyperLogLog数据结构高效地统计微博平台的日活跃用户(DAU)和月活跃用户(MAU)数量。通过HyperLogLog的高精度和低内存消耗特性,可以实现对大规模用户数据的实时统计与分析,为平台运营提供有力的数据支持。 ... [详细]
  • RancherOS 是由 Rancher Labs 开发的一款专为 Docker 设计的轻量级 Linux 发行版,提供了一个全面的 Docker 运行环境。其引导镜像仅 20MB,非常适合在资源受限的环境中部署。本文将详细介绍如何在 ESXi 虚拟化平台上安装和配置 RancherOS,帮助用户快速搭建高效、稳定的容器化应用环境。 ... [详细]
  • 在编写数据库应用程序时,常常需要用户自己在控制面板中配置ODBC数据源。然而对一般用户而言,配置ODBC数据源的工作是有一定困难的。因此, ... [详细]
  • 1.如何进行迁移 使用Pytorch写的模型: 对模型和相应的数据使用.cuda()处理。通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去。 ... [详细]
author-avatar
实现毛_424
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有