热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

sklearn预测pima糖尿病

sklearn预测pima糖尿病-文章目录数据集描述准备工作实验环境和工具预测分析探索性数据分析数据描述可视化分析构建baseline数据预处理离群值处理缺失值处理特征工

数据集描述

本数据集内含十个属性列
Pergnancies: 怀孕次数
Glucose:血糖浓度
BloodPressure:舒张压(毫米汞柱)
SkinThickness:肱三头肌皮肤褶皱厚度(毫米)
Insulin:两个小时血清胰岛素(μU/毫升)
BMI:身体质量指数,体重除以身高的平方
Diabets Pedigree Function: 疾病血统指数
是否和遗传相关,Height:身高(厘米)
Age:年龄
Outcome:0表示不患病,1表示患病。

任务:建立机器学习模型以准确预测数据集中的患者是否患有糖尿病

准备工作

查阅资料得知各属性的数据值要求,方面后期对于数据的分析与处理过程。
属性列名称 数据值要求
Pergnancies(怀孕次数) 符合常理即可(可为0)
Glucose(血糖浓度) 正常值为:80~120
BloodPressure(舒张压(毫米汞柱)) 正常值为:60~80
SkinThickness(肱三头肌皮肤褶皱厚度(毫米)) 不为0
Insulin(两个小时血清胰岛素(/毫升)) 正常值为:35~145
BMI(身体质量指数:体重除以身高的平方) 正常值为:18.5~24.9
Diabets Pedigree Function:(疾病血统指数:是否和遗传相关) 无特殊值要求
Height(身高(厘米)) 不为0 符合常理即可
Age(年龄) 符合常理即可
Outcome(0表示不患病,1表示患病) 标签值

实验环境和工具

python3.5.6 + jupyter
数据处理 pandas、numpy
可视化 matplotlib、seaborn
模型构建 sklearn

预测分析

探索性数据分析

数据描述

首先观察基本的数据类型,以及数据是否存在缺失情况,简要统计信息

all_data.shape
all_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 10 columns):
 #   Column                    Non-Null Count  Dtype  
---  ------                    --------------  -----  
 0   Pregnancies               768 non-null    int64  
 1   Glucose                   768 non-null    int64  
 2   BloodPressure             768 non-null    int64  
 3   SkinThickness             768 non-null    int64  
 4   Insulin                   768 non-null    int64  
 5   BMI                       768 non-null    float64
 6   DiabetesPedigreeFunction  768 non-null    float64
 7   Age                       768 non-null    int64  
 8   Height                    766 non-null    object 
 9   Outcome                   768 non-null    int64  
dtypes: float64(2), int64(7), object(1)
memory usage: 60.1+ KB

数据总量时比较少的只有768个例子,可以看到除Height外的属性都为数值型属性。在后续数据预处理过程需要对Height属性进行类型转换操作。目前没有缺失值的出现。

# height 数值类型 为object 需要转化为 数值型
all_data = all_data.astype({'Height':'float64'}) 
all_data.describe()


发现两个问题:

  1. 缺失值
    从其中的min值可以很直观地观察到,Glucose, BloodPressure, SkinTinckness, Insulin, BMI等特征存在0值的情况(当然Pregnancies根据常识判断是可以为0的)。而根据常规范围明显可以判定这些0值是不合理的,所以也是一种缺失值缺失值,后续数据预处理需要对这些缺失值进行填充处理。
  2. 离群值/异常值
    Glucose,BloodPressure,SkinTinckness,Insulin等特征的max值和75%分位点值或者min值和25%分位点值之间的差距比较大,初步判断可能存在离群值/异常值。尤其是SkinThickness和Insulin特征(具体见图4红色框部分),后续可以通过可视化进一步直观地观察判断。
    为了方便后序对缺失值的统一处理,将异常值统一替换为np.nan。
import numpy as np
#缺失值替换 经分析,除怀孕次数,其他特征的0值表示缺失值 替换为np.nan
replace_list = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Height']
all_data.loc[:,replace_list] = all_data.loc[:,replace_list].replace({0:np.nan})
#各特征缺失数量统计
null_count = all_data.isnull().sum().values
# 缺失值情况
plt.figure()
sns.barplot(x = null_count, y = all_data.columns)
for x, y in enumerate(null_count):
    plt.text(y, x, "%s" %y, horizontalalignment='center', verticalalignment='center')
plt.show()


可以观察到Glucose,Insulin,SkinThickness,BMI,Height等特征都存在缺失值。并且 Insulin,SkinThickness缺失值比较多,分别占到了48%,30%的比例。所以后期数据预处理也是很关键的。

可视化分析

接下来通过更多针对性的可视化,来进一步探索特征值的分布以及特征和预测变量之间的关系

# 患病和不患病情况下 箱线图查看数据分散情况
for col in all_data.columns:
    plt.figure(figsize = (10,6))
    if all_data[col].unique().shape[0] > 2:
        sns.boxplot(x="Outcome", y=col, data=all_data.dropna())
    else:
        sns.countplot(col,hue = 'Outcome',data = all_data.dropna())
    plt.title(col)
    plt.show()

部分输出:

观察患病和不患病情况下 各特征值或者人数分布
label接近2:1 存在一定的分布不平衡 
像insulin之类的特征离群值是比较多的,由于离群值会对模型评估产生影响,所以后续可能要做处理,剔除偏离较大的离群值
# 患病和不患病情况下 各特征的分布情况
for col in all_data.drop('Outcome',1).columns:
    plt.figure()
    sns.displot(data = all_data, x = col,hue = 'Outcome',kind='kde')
    plt.show()

部分输出:


  1. 从数据样本本身出发研究数据分布特征,可以发现在患病和不患病两种情况下,部分特征的密度分布比较相近,特别是height的分布图,发现两曲线基本相近。感觉和label之间的相关性都不是很强。
  2. 同时,可以发现部分特征存在右偏的现象(skewness (偏度) 描述数据分布形态的统计量,其描述的是某总体取值分布的对称性),考虑到需要数据尽量服从正态分布,所以后续数据预处理需要对存在一定偏度的特征进行相关处理。
# 观察各特征分布和患病的关系
corr = all_data.corr()
plt.figure(figsize = (8,6))
sns.heatmap(corr,annot = True,cmap = 'Blues')
plt.show()


heatmap()函数可以直观地将数据值的大小以定义的颜色深浅表示出来。

  1. 可以发现颜色相对来说都比较浅,也就是说无论是特征和特征之间还是特征和outcome标签之间的相关性都没有很高。
  2. 发现其余各特征变量中与outcome的相关度中最高的是Glucose 属性值为0.49,最低的是Height属性值为0.059。
  3. 同时观察特征与特征之间的关系,发现Insulin与Glucose,BMI和SkinThickness之间的相关度分别为0.58,0.65属于比较高的相关性,由于Insulin是一个确实比较严重的特征,而相关性可以是一种协助填充缺失值的方法。
plt.figure()
sns.scatterplot(x = 'Insulin', y = 'Glucose', data = all_data)
plt.show()
sns.scatterplot(x = 'Insulin', y = 'BMI', data = all_data)
plt.show()
sns.scatterplot(x = 'Insulin', y = 'Age', data = all_data)
plt.show()

plt.figure()
sns.scatterplot(x = 'SkinThickness', y = 'BMI', data = all_data)
plt.show()
sns.scatterplot(x = 'SkinThickness', y = 'Glucose', data = all_data)
plt.show()
sns.scatterplot(x = 'SkinThickness', y = 'BloodPressure', data = all_data)
plt.show()

部分输出:

构建baseline

因为决策树几乎不需要数据预处理。其他方法经常需要数据标准化,创建虚拟变量和删除缺失值。

# 读取数据
all_data = pd.read_csv('data.csv')

# height 数值类型 为object 需要转化为 数值型
all_data = all_data.astype({'Height':'float64'})
# 
all_data.dropna(inplace = True)
# 特征
feature_data = all_data.drop('Outcome',1)
# 标签
label = all_data['Outcome']

base_model = DecisionTreeClassifier()
base_scores = cross_validate(base_model, feature_data, label,cv=5,return_train_score=True)
print(base_scores['test_score'].mean())
0.6954248366013072

数据预处理

综合前面分析,先做了以下处理

# 读取数据
all_data = pd.read_csv('data.csv')

# height 数值类型 为object 需要转化为 数值型
all_data = all_data.astype({'Height':'float64'})

# 理论缺失值0替换为np.nan
replace_list = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Height']
all_data.loc[:,replace_list] = all_data.loc[:,replace_list].replace({0:np.nan})

# 删除相关性低的Height
all_data.drop('Height',1,inplace = True)

离群值处理

  1. 经过前面的分析发现数据是存在部分离群值的,虽然实验本身就是关于疾病预测,异常值的存在属于正常现象。但是对于一些可能超出人体接受范围的值,衡量对预测的影响之后,由于数据量比较小,这里选择删除极端异常点。
  2. 极端异常点 :上限的计算公式为Q3+3(Q3-Q1) 下界的计算公式为Q1-3(Q3-Q1))。
# remove the outliers
# 异常点 上须的计算公式为Q3+1.5(Q3-Q1);下须的计算公式为Q1-1.5(Q3-Q1)
# 极端异常点 :上限的计算公式为Q3+3(Q3-Q1) 下界的计算公式为Q1-3(Q3-Q1)
# 由于数据量比较少 所以选择删除极端异常值
def remove_outliers(feature,all_data):
    first_quartile = all_data[feature].describe()['25%']
    third_quartile = all_data[feature].describe()['75%']
    iqr = third_quartile - first_quartile
    # 异常值下标
    index = all_data[(all_data[feature] < (first_quartile - 3*iqr)) | (all_data[feature] > (first_quartile + 3*iqr))].index
    all_data = all_data.drop(index)
    return all_data
outlier_features = ['Insulin', 'Glucose', 'BloodPressure', 'SkinThickness', 'BMI', 'DiabetesPedigreeFunction']
for feat in outlier_features:
    all_data = remove_outliers(feat,all_data)

处理之后的数据基本的统计信息

缺失值处理

缺失值处理这里考虑

  1. 直接删除处理
def drop_method(all_data):
    median_fill = ['Glucose', 'BloodPressure','SkinThickness', 'BMI','Height']
    for column in median_fill:
        median_val = all_data[column].median()
        all_data[column].fillna(median_val, inplace=True)
    all_data.dropna(inplace = True)
    return all_data
  1. 中值填充
def median_method():
    for column in list(all_data.columns[all_data.isnull().sum() > 0]):
        median = all_data[column].median()
        all_data[column].fillna(median, inplace=True)
  1. KNNImputer填充
def knn_method():
    # 先将缺失值比较少的特征用中值填充
    values = {'Glucose': all_data['Glucose'].median(),'BloodPressure':all_data['BloodPressure'].median(),'BMI':all_data['BMI'].median()}
    all_data.fillna(value=values,inplace=True)

    # 用KNNImputer 填充 Insulin SkinThickness
    corr_SkinThickness = ['BMI', 'Glucose','BloodPressure', 'SkinThickness']
    # 权重按距离的倒数表示。在这种情况下,查询点的近邻比远处的近邻具有更大的影响力
    SkinThickness_imputer = KNNImputer(n_neighbors = 16,weights = 'distance')
    all_data[corr_SkinThickness] = SkinThickness_imputer.fit_transform(all_data[corr_SkinThickness])

    corr_Insulin = ['Glucose', 'BMI','BloodPressure', 'Insulin']
    Insulin_imputer = KNNImputer(n_neighbors = 16,weights = 'distance')
    all_data[corr_Insulin] = Insulin_imputer.fit_transform(all_data[corr_Insulin])
  1. 随机森林填充
from sklearn.ensemble import RandomForestRegressor
from sklearn.impute import SimpleImputer  # 用来填补缺失值
def predict_method(feature):
    # 复制一份数据 避免对原数据做出不必要的修改
    copy_data = all_data.copy()
    # 缺失了的下标
    predict_index = copy_data[copy_data[feature].isnull()].index
    # 没缺失的下标
    train_index = copy_data[feature].dropna().index
    # 用作预测 的训练集标签
    train_label = copy_data.loc[train_index,feature]
    copy_data = copy_data.drop(feature,axis=1)
    # 对特征先用中值填充
    imp_median = SimpleImputer(strategy='median')
    # 用作预测的训练集特征
    train_feature = copy_data.loc[train_index]
    train_feature = imp_median.fit_transform(train_feature)
    # 需要进行预测填充处理的缺失值
    pre_feature = copy_data.loc[predict_index]
    pre_feature = imp_median.fit_transform(pre_feature)
    # 选取随机森林模型
    fill_model = RandomForestRegressor()
    fill_model = fill_model.fit(train_feature,train_label)
    # 预测 填充
    pre_value = fill_model.predict(pre_feature)
    all_data.loc[predict_index,feature] = pre_value

#用随机森林的方法填充缺失值较多的 SkinThickness 和 Insulin 缺失值
predict_method("Insulin")
predict_method("SkinThickness")
# 其余值中值填充
for column in list(all_data.columns[all_data.isnull().sum() > 0]):
    median = all_data[column].median()
    all_data[column].fillna(median, inplace=True)

特征工程

# 特征
feture_data = all_data.drop('Outcome',1)
# 标签
label = all_data['Outcome']
# 利用BMI和身高构造weight特征
# BMI = weight(kg) / height(m)**2
feture_data['weight'] = (0.01*feture_data['Height'])**2 * feture_data['BMI']

数据标准化

# 标准化
Std = StandardScaler()
feture_data = Std.fit_transform(feture_data)

模型构建与调参优化

用到的模型

from sklearn.svm import SVC,SVR
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier,StackingClassifier

调参方法

from sklearn.model_selection import GridSearchCV

def train(model, params):
    grid_search = GridSearchCV(estimator = model, param_grid = params, cv = kfold)
    grid_search.fit(feture_data,label)
    print(grid_search.best_params_)
    model_score = cross_validate(grid_search.best_estimator_,feture_data, label, cv=5)
    print(model_score['test_score'])
    print("mean test score :{}".format(model_score['test_score'].mean()))
    return grid_search

SVC

#调参时先尝试一个大范围,确定比较小的范围,然后在小范围里搜索
model = SVC()
params  =  {'C':np.linspace(0.1, 2, 100)}
SVC_grid_search = train(model,params)
plt.figure()
sns.lineplot(x=[x for x in range(100)],y=SVC_grid_search.cv_results_['mean_test_score'])
plt.show()

LogisticRegression

params = {"C":np.linspace(0.1,2,100)}
model = LogisticRegression()
LR_grid_search= train(model,params)
plt.figure()
sns.lineplot(x=[x for x in range(100)],y=LR_grid_search.cv_results_['mean_test_score'])
plt.show()

RandomForestClassifier

params = {"n_estimators":[x for x in range(30,50,4)],'min_samples_split':[x for x in range(2,12)]}
model = RandomForestClassifier()
RFC_grid_search = train(model,params)
plt.figure()
sns.lineplot(x=[x for x in range(len(grid_search.cv_results_['mean_test_score']))],
             y=RFC_grid_search.cv_results_['mean_test_score'])
plt.show()

StackingClassifier

estimators = [
    ('SVC',SVC_grid_search.best_estimator_),
    ('NB', LR_grid_search.best_estimator_),
    ('RFC', RFC_grid_search.best_estimator_)
]
model = StackingClassifier(estimators=estimators, final_estimator=SVC())
model_score = cross_validate(model,feture_data, label, cv=5)
print(model_score['test_score'])
print("mean test score :{}".format(model_score['test_score'].mean()))

缺失值直接删除预测结果:
{‘C’: 1.405050505050505}
[0.83333333 0.71830986 0.83098592 0.83098592 0.84507042]
mean test score :0.811737089201878

{‘C’: 0.17676767676767677}
[0.86111111 0.73239437 0.77464789 0.83098592 0.84507042]
mean test score :0.8088419405320814

{‘min_samples_split’: 7, ‘n_estimators’: 30}
[0.77777778 0.69014085 0.74647887 0.83098592 0.85915493]
mean test score :0.780907668231612

[0.84722222 0.73239437 0.81690141 0.84507042 0.85915493]
mean test score :0.8201486697965571
缺失值中值填充预测效果
{‘C’: 1.7888888888888888}
[0.79452055 0.75342466 0.78082192 0.82191781 0.79310345]
mean test score :0.7887576759565423

{‘C’: 0.1575757575757576}
[0.78082192 0.76712329 0.7739726 0.80821918 0.77931034]
mean test score :0.7818894662257911

{‘min_samples_split’: 4, ‘n_estimators’: 44}
[0.80136986 0.71232877 0.74657534 0.81506849 0.79310345]
mean test score :0.7736891828058574
其余略 可以看出由于缺失值比较多,所以填充比直接删除的效果是要更差的

完整代码

https://github.com/wang-hui-shan/Pima_Diabetes_Predict


推荐阅读
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 本文由编程笔记#小编为大家整理,主要介绍了logistic回归(线性和非线性)相关的知识,包括线性logistic回归的代码和数据集的分布情况。希望对你有一定的参考价值。 ... [详细]
  • 展开全部下面的代码是创建一个立方体Thisexamplescreatesanddisplaysasimplebox.#Thefirstlineloadstheinit_disp ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 本文介绍了绕过WAF的XSS检测机制的方法,包括确定payload结构、测试和混淆。同时提出了一种构建XSS payload的方法,该payload与安全机制使用的正则表达式不匹配。通过清理用户输入、转义输出、使用文档对象模型(DOM)接收器和源、实施适当的跨域资源共享(CORS)策略和其他安全策略,可以有效阻止XSS漏洞。但是,WAF或自定义过滤器仍然被广泛使用来增加安全性。本文的方法可以绕过这种安全机制,构建与正则表达式不匹配的XSS payload。 ... [详细]
  • 我用Tkinter制作了一个图形用户界面,有两个主按钮:“开始”和“停止”。请您就如何使用“停止”按钮终止“开始”按钮为以下代码调用的已运行功能提供建议 ... [详细]
  • YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程
    本文介绍了关于人工智能、神经网络和深度学习的知识点,并提供了YOLOv7基于自己的数据集从零构建模型完整训练、推理计算的详细教程。文章还提到了郑州最低生活保障的话题。对于从事目标检测任务的人来说,YOLO是一个熟悉的模型。文章还提到了yolov4和yolov6的相关内容,以及选择模型的优化思路。 ... [详细]
  • javascript  – 概述在Firefox上无法正常工作
    我试图提出一些自定义大纲,以达到一些Web可访问性建议.但我不能用Firefox制作.这就是它在Chrome上的外观:而那个图标实际上是一个锚点.在Firefox上,它只概述了整个 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 本文详细介绍了Java中vector的使用方法和相关知识,包括vector类的功能、构造方法和使用注意事项。通过使用vector类,可以方便地实现动态数组的功能,并且可以随意插入不同类型的对象,进行查找、插入和删除操作。这篇文章对于需要频繁进行查找、插入和删除操作的情况下,使用vector类是一个很好的选择。 ... [详细]
  • 本文介绍了如何使用python从列表中删除所有的零,并将结果以列表形式输出,同时提供了示例格式。 ... [详细]
  • 利用Visual Basic开发SAP接口程序初探的方法与原理
    本文介绍了利用Visual Basic开发SAP接口程序的方法与原理,以及SAP R/3系统的特点和二次开发平台ABAP的使用。通过程序接口自动读取SAP R/3的数据表或视图,在外部进行处理和利用水晶报表等工具生成符合中国人习惯的报表样式。具体介绍了RFC调用的原理和模型,并强调本文主要不讨论SAP R/3函数的开发,而是针对使用SAP的公司的非ABAP开发人员提供了初步的接口程序开发指导。 ... [详细]
  • ASP.NET2.0数据教程之十四:使用FormView的模板
    本文介绍了在ASP.NET 2.0中使用FormView控件来实现自定义的显示外观,与GridView和DetailsView不同,FormView使用模板来呈现,可以实现不规则的外观呈现。同时还介绍了TemplateField的用法和FormView与DetailsView的区别。 ... [详细]
  • 本文介绍了在Python张量流中使用make_merged_spec()方法合并设备规格对象的方法和语法,以及参数和返回值的说明,并提供了一个示例代码。 ... [详细]
author-avatar
风尚宣城_588
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有