面试问题Redis锁的过期时间小于业务的执行时间该如何续期?问题分析首先如果你之前用Redis的分布式锁的姿势正确,并且看过相应的官方文档的话,这个问题Soeasy.我们来看很多同
面试问题 Redis锁的过期时间小于业务的执行时间该如何续期?
问题分析 首先如果你之前用Redis的分布式锁的姿势正确,并且看过相应的官方文档的话,这个问题So easy
.我们来看
很多同学在用分布式锁时,都是直接百度搜索找一个Redis分布式锁工具类就直接用了,其实Redis分布式锁比较正确的姿势是采用redisson
这个客户端工具
如何回答 只要客户端一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下 ,如果客户端还持有锁key,那么就会不断的延长锁key的生存时间。
默认情况下,加锁的时间是30秒,.如果加锁的业务没有执行完,就会进行一次续期,把锁重置成30秒.那这个时候可能又有同学问了,那业务的机器万一宕机了呢?宕机了定时任务跑不了,就续不了期,那自然30秒之后锁就解开了呗.
底层原理 redisson实现Redis分布式锁的底层原理 拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】
1)加锁机制
咱们来看上面那张图,现在某个客户端要加锁。如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。
这里注意 ,仅仅只是选择一台机器!这点很关键!
紧接着,就会发送一段lua脚本到redis上,那段lua脚本如下所示:
为啥要用lua脚本呢?
因为一大坨复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性 。
那么,这段lua脚本是什么意思呢?
KEYS[1] 代表的是你加锁的那个key,比如说:
RLock lock = redisson.getLock(“myLock”);
这里你自己设置了加锁的那个锁key就是“myLock”。
ARGV[1] 代表的就是锁key的默认生存时间,默认30秒。
ARGV[2] 代表的是加锁的客户端的ID,类似于下面这样:
8743c9c0-0795-4907-87fd-6c719a6b4586:1
给大家解释一下,第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。
如何加锁呢?很简单,用下面的命令:
hset myLock
8743c9c0-0795-4907-87fd-6c719a6b4586:1 1
通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:
上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。
接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。
好了,到此为止,ok,加锁完成了。
(2)锁互斥机制
那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?
很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。
接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。
所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。 比如还剩15000毫秒的生存时间。
此时客户端2会进入一个while循环,不停的尝试加锁。
(3)watch dog自动延期机制
客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?
简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下 ,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。
(4)可重入加锁机制
那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?
比如下面这种代码:
这时我们来分析一下上面那段lua脚本。
第一个if判断肯定不成立,“exists myLock”会显示锁key已经存在了。
第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”
此时就会执行可重入加锁的逻辑,他会用:
incrby myLock
8743c9c0-0795-4907-87fd-6c71a6b4586:1 1
通过这个命令,对客户端1的加锁次数,累加1。
此时myLock数据结构变为下面这样:
大家看到了吧,那个myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数
(5)释放锁机制
如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。
其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。
如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:
“del myLock”命令,从redis里删除这个key。
然后呢,另外的客户端2就可以尝试完成加锁了。
这就是所谓的分布式锁的开源Redisson框架的实现机制。
一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。
(6)Redis分布式锁的缺点
其实上面那种方案最大的问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例。
但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。
接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。
此时就会导致多个客户端对一个分布式锁完成了加锁。
这时系统在业务语义上一定会出现问题,导致各种脏数据的产生 。
所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制 导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。
(7)Redis红锁
Redis作者针对Redis分布式锁的缺点提出了红锁的概念算法如下:
顺序向五个节点请求加锁 根据一定的超时时间 来推断是不是跳过该节点 三个节点加锁成功并且花费时间小于锁的有效期 认定加锁成功
也就是说,假设锁30秒 过期,三个节点加锁花了31秒,自然是加锁失败了。这只是举个例子,实际上并不应该等每个节点那么长时间,就像官网所说的那样,假设有效期是10秒 ,那么单个redis实例操作超时时间,应该在5到50毫秒 (注意时间单位)还是假设我们设置有效期是30秒,图中超时了两个redis节点。那么加锁成功的节点总共花费 了3秒,所以锁的实际有效期 是小于27秒的。即扣除加锁成功三个实例的3秒,还要扣除等待超时redis实例的总共时间。
关于红锁的争论:Martin Kleppmann和antirez的redLock辩论. 一个是很有资历的分布式架构师,一个是redis之父。 所以说如果项目里要使用红锁,除了红锁的介绍,不妨要多看两篇文章,即:
Martin Kleppmann的质疑贴 antirez的反击贴 有些人是不是觉得大佬们都是杠精啊,天天就想着极端情况。 其实高可用 嘛,拼的就是99.999…% 中小数点后面的位数。
其实,在实际场景中,红锁是很少使用的。这是因为使用了红锁后会影响高并发环境下的性能,使得程序的体验更差。所以,在实际场景中,我们一般都是要保证Redis集群的可靠性。同时,使用红锁后,当加锁成功的RLock个数不超过总数的一半时,会返回加锁失败,即使在业务层面任务加锁成功了,但是红锁也会返回加锁失败的结果。另外,使用红锁时,需要提供多套Redis的主从部署架构,同时,这多套Redis主从架构中的Master节点必须都是独立的,相互之间没有任何数据交互。
参考文章 拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】
每秒上千订单场景下的分布式锁高并发优化实践!【石杉的架构笔记】
红锁的实现 – IT路上的小白 – 博客园
细说Redis分布式锁 – 知乎