热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

redisson分布式锁续期(redis分布式锁内部原理)

面试问题Redis锁的过期时间小于业务的执行时间该如何续期?问题分析首先如果你之前用Redis的分布式锁的姿势正确,并且看过相应的官方文档的话,这个问题Soeasy.我们来看很多同

面试问题

Redis锁的过期时间小于业务的执行时间该如何续期?

问题分析

首先如果你之前用Redis的分布式锁的姿势正确,并且看过相应的官方文档的话,这个问题So easy.我们来看

很多同学在用分布式锁时,都是直接百度搜索找一个Redis分布式锁工具类就直接用了,其实Redis分布式锁比较正确的姿势是采用redisson这个客户端工具

redisson分布式锁续期(redis分布式锁内部原理)

如何回答

只要客户端一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端还持有锁key,那么就会不断的延长锁key的生存时间。

默认情况下,加锁的时间是30秒,.如果加锁的业务没有执行完,就会进行一次续期,把锁重置成30秒.那这个时候可能又有同学问了,那业务的机器万一宕机了呢?宕机了定时任务跑不了,就续不了期,那自然30秒之后锁就解开了呗.

底层原理 


redisson分布式锁续期(redis分布式锁内部原理)
redisson实现Redis分布式锁的底层原理

拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】

1)加锁机制

咱们来看上面那张图,现在某个客户端要加锁。如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。

这里注意,仅仅只是选择一台机器!这点很关键!

紧接着,就会发送一段lua脚本到redis上,那段lua脚本如下所示:

redisson分布式锁续期(redis分布式锁内部原理)

为啥要用lua脚本呢?

因为一大坨复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性

那么,这段lua脚本是什么意思呢?

KEYS[1]代表的是你加锁的那个key,比如说:

RLock lock = redisson.getLock(“myLock”);

这里你自己设置了加锁的那个锁key就是“myLock”。

ARGV[1]代表的就是锁key的默认生存时间,默认30秒。

ARGV[2]代表的是加锁的客户端的ID,类似于下面这样:

8743c9c0-0795-4907-87fd-6c719a6b4586:1

给大家解释一下,第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。

如何加锁呢?很简单,用下面的命令:

hset myLock 

    8743c9c0-0795-4907-87fd-6c719a6b4586:1 1

通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:

redisson分布式锁续期(redis分布式锁内部原理)

上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。

接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。

好了,到此为止,ok,加锁完成了。

(2)锁互斥机制

那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?

很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。

接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。

所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。比如还剩15000毫秒的生存时间。

此时客户端2会进入一个while循环,不停的尝试加锁。

(3)watch dog自动延期机制

客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?

简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。

(4)可重入加锁机制

那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?

比如下面这种代码:

redisson分布式锁续期(redis分布式锁内部原理)

这时我们来分析一下上面那段lua脚本。

第一个if判断肯定不成立,“exists myLock”会显示锁key已经存在了。

第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”

此时就会执行可重入加锁的逻辑,他会用:

incrby myLock 

 8743c9c0-0795-4907-87fd-6c71a6b4586:1 1

通过这个命令,对客户端1的加锁次数,累加1。

此时myLock数据结构变为下面这样:

redisson分布式锁续期(redis分布式锁内部原理)

大家看到了吧,那个myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数

(5)释放锁机制

如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。

其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。

如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:

“del myLock”命令,从redis里删除这个key。

然后呢,另外的客户端2就可以尝试完成加锁了。

这就是所谓的分布式锁的开源Redisson框架的实现机制。

一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。

(6)Redis分布式锁的缺点

其实上面那种方案最大的问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例。

但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。

接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。

此时就会导致多个客户端对一个分布式锁完成了加锁。

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生

所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。

(7)Redis红锁

Redis作者针对Redis分布式锁的缺点提出了红锁的概念算法如下:



  1. 顺序向五个节点请求加锁

  2. 根据一定的超时时间来推断是不是跳过该节点

  3. 三个节点加锁成功并且花费时间小于锁的有效期

  4. 认定加锁成功


redisson分布式锁续期(redis分布式锁内部原理)

也就是说,假设锁30秒过期,三个节点加锁花了31秒,自然是加锁失败了。这只是举个例子,实际上并不应该等每个节点那么长时间,就像官网所说的那样,假设有效期是10,那么单个redis实例操作超时时间,应该在5到50毫秒(注意时间单位)还是假设我们设置有效期是30秒,图中超时了两个redis节点。那么加锁成功的节点总共花费了3秒,所以锁的实际有效期是小于27秒的。即扣除加锁成功三个实例的3秒,还要扣除等待超时redis实例的总共时间。

关于红锁的争论:Martin Kleppmann和antirez的redLock辩论. 一个是很有资历的分布式架构师,一个是redis之父。
所以说如果项目里要使用红锁,除了红锁的介绍,不妨要多看两篇文章,即:


  1. Martin Kleppmann的质疑贴

  2. antirez的反击贴


有些人是不是觉得大佬们都是杠精啊,天天就想着极端情况。 其实高可用嘛,拼的就是99.999…% 中小数点后面的位数。 

其实,在实际场景中,红锁是很少使用的。这是因为使用了红锁后会影响高并发环境下的性能,使得程序的体验更差。所以,在实际场景中,我们一般都是要保证Redis集群的可靠性。同时,使用红锁后,当加锁成功的RLock个数不超过总数的一半时,会返回加锁失败,即使在业务层面任务加锁成功了,但是红锁也会返回加锁失败的结果。另外,使用红锁时,需要提供多套Redis的主从部署架构,同时,这多套Redis主从架构中的Master节点必须都是独立的,相互之间没有任何数据交互。


参考文章

拜托,面试请不要再问我Redis分布式锁的实现原理【石杉的架构笔记】

每秒上千订单场景下的分布式锁高并发优化实践!【石杉的架构笔记】

红锁的实现 – IT路上的小白 – 博客园

细说Redis分布式锁 – 知乎


推荐阅读
  • 浏览器作为我们日常不可或缺的软件工具,其背后的运作机制却鲜为人知。本文将深入探讨浏览器内核及其版本的演变历程,帮助读者更好地理解这一关键技术组件,揭示其内部运作的奥秘。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 专业人士如何做自媒体 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 用阿里云的免费 SSL 证书让网站从 HTTP 换成 HTTPS
    HTTP协议是不加密传输数据的,也就是用户跟你的网站之间传递数据有可能在途中被截获,破解传递的真实内容,所以使用不加密的HTTP的网站是不 ... [详细]
  • 探讨Redis的最佳应用场景
    本文将深入探讨Redis在不同场景下的最佳应用,包括其优势和适用范围。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 在当今的软件开发领域,分布式技术已成为程序员不可或缺的核心技能之一,尤其在面试中更是考察的重点。无论是小微企业还是大型企业,掌握分布式技术对于提升工作效率和解决实际问题都至关重要。本周的Java架构师实战训练营中,我们深入探讨了Kafka这一高效的分布式消息系统,它不仅支持发布订阅模式,还能在高并发场景下保持高性能和高可靠性。通过实际案例和代码演练,学员们对Kafka的应用有了更加深刻的理解。 ... [详细]
  • 观察 | 求职体验:收到录用通知的公司通常不深究技术细节,而那些详细追问的公司往往没有后续进展
    观察 | 求职体验:收到录用通知的公司通常不深究技术细节,而那些详细追问的公司往往没有后续进展 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • 2016-2017学年《网络安全实战》第三次作业
    2016-2017学年《网络安全实战》第三次作业总结了教材中关于网络信息收集技术的内容。本章主要探讨了网络踩点、网络扫描和网络查点三个关键步骤。其中,网络踩点旨在通过公开渠道收集目标信息,为后续的安全测试奠定基础,而不涉及实际的入侵行为。 ... [详细]
  • 本文源自极分享,详细内容请参阅原文。技术债务如同信用卡负债,随着时间推移,修复成本会越来越高,因此程序员必须对此有深刻认识。此外,团队应致力于培养一种持续维护和优化代码的文化,以减少技术债务的累积。 ... [详细]
author-avatar
staback郭_122
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有