热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

pytorch学习教程之自定义数据集

这篇文章主要给大家介绍了关于pytorch学习教程之自定义数据集的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着

自定义数据集

在训练深度学习模型之前,样本集的制作非常重要。在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程。

开发环境

  • Ubuntu 18.04
  • pytorch 1.0
  • pycharm

实验目的

  1. 掌握pytorch中数据集相关的API接口和类
  2. 熟悉数据集制作的整个流程

实验过程

1.收集图像样本

以简单的猫狗二分类为例,可以在网上下载一些猫狗图片。创建以下目录:

  • data-------------根目录
  • data/test-------测试集
  • data/train------训练集
  • data/val--------验证集

在test/train/val之下在校分别创建2个文件夹,dog, cat

cat, dog文件夹下分别存放2类图像:

标签

种类 标签
cat 0
dog 1

之后写一个简单的python脚本,生成txt文件,用于指明每个图像和标签的对应关系。

格式: /cat/1.jpg 0 dog/1.jpg 1 .....

如图:

至此,样本集的收集以及简单归类完成,下面将开始采用pytorch的数据集相关API和类。

2. 使用pytorch相关类,API对数据集进行封装

2.1 pytorch中数据集相关的类,接口

pytorch中数据集相关的类位于torch.utils.data package中。

https://pytorch.org/docs/stable/data.html

本次实验,主要使用以下类:

torch.utils.data.Dataset
torch.utils.data.DataLoader

Dataset类的使用: 所有的类都应该是此类的子类(也就是说应该继承该类)。 所有的子类都要重写(override) __len()__, __getitem()__ 这两个方法。

方法 作用
__len()__ 此方法应该提供数据集的大小(容量)
__getitem()__ 此方法应该提供支持下标索方式引访问数据集

这里和Java抽象类很相似,在抽象类abstract class中,一般会定义一些抽象方法abstract method,抽象方法:只有方法名没有方法的具体实现。如果一个子类继承于该抽象类,要重写(overrode)父类的抽象方法。

DataLoader类的使用:

2.2 实现

使用到的python package

python package 目的
numpy 矩阵操作,对图像进行转置
skimage 图像处理,图像I/O,图像变换
matplotlib 图像的显示,可视化
os 一些文件查找操作
torch pytorch
torvision pytorch

源码

导入python包

import numpy as np
from skimage import io
from skimage import transform
import matplotlib.pyplot as plt
import os
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
from torchvision.utils import make_grid

第一步:

定义一个子类,继承Dataset类, 重写 __len()__, __getitem()__ 方法。

细节:

1.数据集中一个一样的表示:采用字典的形式sample = {"image": image, "label": label}。

2.图像的读取:采用skimage.io进行读取,读取之后的结果为numpy.ndarray形式。

3.图像变换:transform参数

# step1: 定义MyDataset类, 继承Dataset, 重写抽象方法:__len()__, __getitem()__
class MyDataset(Dataset):

 def __init__(self, root_dir, names_file, transform=None):
 self.root_dir = root_dir
 self.names_file = names_file
 self.transform = transform
 self.size = 0
 self.names_list = []

 if not os.path.isfile(self.names_file):
  print(self.names_file + "does not exist!")
 file = open(self.names_file)
 for f in file:
  self.names_list.append(f)
  self.size += 1

 def __len__(self):
 return self.size

 def __getitem__(self, idx):
 image_path = self.root_dir + self.names_list[idx].split(" ")[0]
 if not os.path.isfile(image_path):
  print(image_path + "does not exist!")
  return None
 image = io.imread(image_path) # use skitimage
 label = int(self.names_list[idx].split(" ")[1])

 sample = {"image": image, "label": label}
 if self.transform:
  sample = self.transform(sample)

 return sample

第二步

实例化一个对象,并读取和显示数据集

train_dataset = MyDataset(root_dir="./data/train",
    names_file="./data/train/train.txt",
    transform=None)

plt.figure()
for (cnt,i) in enumerate(train_dataset):
 image = i["image"]
 label = i["label"]

 ax = plt.subplot(4, 4, cnt+1)
 ax.axis("off")
 ax.imshow(image)
 ax.set_title("label {}".format(label))
 plt.pause(0.001)

 if cnt == 15:
 break

只显示了部分数据,前部分全是cat

第三步(可选 optional)

对数据集进行变换:一般收集到的图像大小尺寸,亮度等存在差异,变换的目的就是使得数据归一化。另一方面,可以通过变换进行数据增加data argument

关于pytorch中的变换transforms,请参考该系列之前的文章

由于数据集中样本采用字典dicts形式表示。 因此不能直接调用torchvision.transofrms中的方法。

本实验只进行尺寸归一化Resize, 数据类型变换ToTensor操作。

Resize

# # 变换Resize
class Resize(object):

 def __init__(self, output_size: tuple):
 self.output_size = output_size

 def __call__(self, sample):
 # 图像
 image = sample["image"]
 # 使用skitimage.transform对图像进行缩放
 image_new = transform.resize(image, self.output_size)
 return {"image": image_new, "label": sample["label"]}

ToTensor

# # 变换ToTensor
class ToTensor(object):

 def __call__(self, sample):
 image = sample["image"]
 image_new = np.transpose(image, (2, 0, 1))
 return {"image": torch.from_numpy(image_new),
  "label": sample["label"]}

第四步: 对整个数据集应用变换

细节: transformers.Compose() 将不同的几个组合起来。先进行Resize, 再进行ToTensor

# 对原始的训练数据集进行变换
transformed_trainset = MyDataset(root_dir="./data/train",
    names_file="./data/train/train.txt",
    transform=transforms.Compose(
    [Resize((224,224)),
    ToTensor()]
    ))

第五步: 使用DataLoader进行包装

为何要使用DataLoader?

① 深度学习的输入是mini_batch形式

② 样本加载时候可能需要随机打乱顺序,shuffle操作

③ 样本加载需要采用多线程

pytorch提供的DataLoader封装了上述的功能,这样使用起来更方便。

# 使用DataLoader可以利用多线程,batch,shuffle等
trainset_dataloader = DataLoader(dataset=transformed_trainset,
     batch_size=4,
     shuffle=True,
     num_workers=4)

可视化:

def show_images_batch(sample_batched):
 images_batch, labels_batch = 
 sample_batched["image"], sample_batched["label"]
 grid = make_grid(images_batch)
 plt.imshow(grid.numpy().transpose(1, 2, 0))


# sample_batch: Tensor , NxCxHxW
plt.figure()
for i_batch, sample_batch in enumerate(trainset_dataloader):
 show_images_batch(sample_batch)
 plt.axis("off")
 plt.ioff()
 plt.show()


plt.show()

通过DataLoader包装之后,样本以min_batch形式输出,而且进行了随机打乱顺序。

至此,自定义数据集的完整流程已实现,test, val集只需要改路径即可。

补充

更简单的方法

上述继承Dataset, 重写 __len()__, __getitem() 是通用的方法,过程相对繁琐。对于简单的分类数据集,pytorch中提供了更简便的方式――ImageFolder。

如果每种类别的样本放在各自的文件夹中,则可以直接使用ImageFolder。

仍然以cat, dog 二分类数据集为例:

文件结构:



Code

import torch
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
import matplotlib.pyplot as plt
import numpy as np


# https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

# data_transform = transforms.Compose([
#  transforms.RandomResizedCrop(224),
#  transforms.RandomHorizontalFlip(),
#  transforms.ToTensor(),
#  transforms.Normalize(mean=[0.485, 0.456, 0.406],
#       std=[0.229, 0.224, 0.225])
# ])

data_transform = transforms.Compose([
 transforms.Resize((224,224)),
 transforms.RandomHorizontalFlip(),
 transforms.ToTensor(),

])

train_dataset = datasets.ImageFolder(root="./data/train",transform=data_transform)
train_dataloader = DataLoader(dataset=train_dataset,
        batch_size=4,
        shuffle=True,
        num_workers=4)


def show_batch_images(sample_batch):
 labels_batch = sample_batch[1]
 images_batch = sample_batch[0]

 for i in range(4):
  label_ = labels_batch[i].item()
  image_ = np.transpose(images_batch[i], (1, 2, 0))
  ax = plt.subplot(1, 4, i + 1)
  ax.imshow(image_)
  ax.set_title(str(label_))
  ax.axis("off")
  plt.pause(0.01)


plt.figure()
for i_batch, sample_batch in enumerate(train_dataloader):
 show_batch_images(sample_batch)

 plt.show()

由于 train 目录下只有2个文件夹,分别为cat, dog, 因此ImageFolder安装顺序对cat使用标签0, dog使用标签1。

End

参考:

https://pytorch.org/docs/stable/data.html

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

到此这篇关于pytorch学习教程之自定义数据集的文章就介绍到这了,更多相关pytorch自定义数据集内容请搜索编程笔记以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程笔记!

原文链接:https://www.jianshu.com/p/2d9927a70594


推荐阅读
  • Python自动化测试入门:Selenium环境搭建
    本文详细介绍如何在Python环境中安装和配置Selenium,包括开发工具PyCharm的安装、Python环境的设置以及Selenium包的安装方法。此外,还提供了编写和运行第一个自动化测试脚本的步骤。 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
  • 在Python开发过程中,随着项目数量的增加,不同项目依赖于不同版本的库,容易引发依赖冲突。为了避免这些问题,并保持开发环境的整洁,可以使用Virtualenv和Virtualenvwrapper来创建和管理多个隔离的Python虚拟环境。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
  • 本文详细介绍了Python中函数的基本概念,包括函数的定义与调用、文档注释、参数传递(形参与实参)、返回值以及函数嵌套。通过具体示例和解释,帮助读者掌握函数在编程中的应用。 ... [详细]
  • 本文详细介绍了Flask项目的配置方法,包括DEBUG模式的设置和配置文件的使用,帮助开发者更好地理解和应用Flask框架。 ... [详细]
  • 嵌入式开发环境搭建与文件传输指南
    本文详细介绍了如何为嵌入式应用开发搭建必要的软硬件环境,并提供了通过串口和网线两种方式将文件传输到开发板的具体步骤。适合Linux开发初学者参考。 ... [详细]
  • 在PHP后端开发中遇到一个难题:通过第三方类文件发送短信功能返回的JSON字符串无法解析。本文将探讨可能的原因并提供解决方案。 ... [详细]
  • 推荐几款高效测量图片像素的工具
    本文介绍了几款适用于Web前端开发的工具,这些工具可以帮助用户在图片上绘制线条并精确测量其像素长度。对于需要进行图像处理或设计工作的开发者来说非常实用。 ... [详细]
  • 搭建Jenkins、Ant与TestNG集成环境
    本文详细介绍了如何在Ubuntu 16.04系统上配置Jenkins、Ant和TestNG的集成开发环境,涵盖从安装到配置的具体步骤,并提供了创建Windows Slave节点及项目构建的指南。 ... [详细]
  • 尝试执行数据库模式加载时遇到错误'Mysql2::Error: 指定的键太长;最大键长度为767字节'。本文将探讨这一问题的成因及解决方案。 ... [详细]
  • 本文深入探讨了UNIX/Linux系统中的进程间通信(IPC)机制,包括消息传递、同步和共享内存等。详细介绍了管道(Pipe)、有名管道(FIFO)、Posix和System V消息队列、互斥锁与条件变量、读写锁、信号量以及共享内存的使用方法和应用场景。 ... [详细]
  • MySQL Debug 模式的实现与应用
    本文详细介绍了如何启用和使用 MySQL 的调试模式,包括编译选项、环境变量配置以及调试信息的解析。通过实际案例展示了如何利用调试模式解决客户端无法连接服务器的问题。 ... [详细]
author-avatar
手机用户2602930391
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有