热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

POJ2891StrangeWaytoExpressIntegers(exgcd—解一元线性同余方程组)

StrangeWaytoExpressIntegersTimeLimit:1000MSMemoryLim
Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 14119   Accepted: 4568

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

Hint

All integers in the input and the output are non-negative and can be represented by 64-bit integral types.


题意:给出k组ai与ri,求满足任意组的 m%ai=ri的m的最小正整数,若不存在输出-1.


题解:额,智商捉鸡(⊙o⊙)… 断断续续看了一天,翻了好几本书,才有点小眉头,终于把书上那些定理证出来了,不过估计很快又会忘了/(ㄒoㄒ)/~~  


这里给出了 m mod(ai)=ri ,那么得到 ai*k+ri=m  ,两边同时 mod (ai)得到  ri mod(ai)  m。  这里给出了k组ai 与 ri,那么我们连立k组 ri mod (ai) ≡ m ,求解即可。 得到 : 

对于 x≡r1(mod a1)
      x≡r2(mod a2)
相当于解不定方程:x*a1+y*a2=r2-r1


代码如下:


#include
#include
#include
using namespace std;
#define LL long long

void exgcd(LL a,LL b,LL &d,LL &x,LL &y)
{
if(!b)
{
x=1; y=0;
d=a;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}

int main()
{
LL a1,a2,r1,r2,i,n;
while(scanf("%lld",&n)!=EOF)
{
int flag=1;
scanf("%lld%lld",&a1,&r1);
for(i=1;i {
scanf("%lld%lld",&a2,&r2);
LL a=a1,b=a2,d,c=r2-r1,x0,y0;
exgcd(a,b,d,x0,y0);
if(c%d!=0)
flag=0;
LL s=b/d;
x0=(x0*(c/d)%s+s)%s;//a*x+b*y==c的最小整数解
r1=r1+a1*x0;//迭代r1的值
a1=a1*(a2/d);//取a1和a2的公倍数
}
if(!flag)
printf("-1\n");
else
printf("%I64d\n",r1);
}
return 0;
}






推荐阅读
author-avatar
没有变成王子的青蛙
这个家伙很懒,什么也没留下!
Tags | 热门标签
RankList | 热门文章
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有