热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python实现KNN分类器——手写识别

1.1优劣优点:进度高,对异常值不敏感,无数据输入假定缺点:计算复杂度高,空间复杂度高应用:主要用于文本分类,相似推荐适用数据范围:数值型和标称型1.2算法伪代码(1)计算已知类别

1.1 优劣

优点:进度高,对异常值不敏感,无数据输入假定

缺点:计算复杂度高,空间复杂度高

应用:主要用于文本分类,相似推荐

适用数据范围:数值型和标称型

1.2 算法伪代码

(1)计算已知类别数据集中的点与当前点的距离

(2)按照距离递增次序排序,选取与当前点距离最小的 k 个点

(3)确定前 k 个点所在类别的出现频率

(4)返回前 k 个点出现频率最高的类别作为当前点的预测分类

2 手写识别

2.1 概念

     指在手写设备上书写时产生的轨迹信息转化为具体字码,本篇博客重点非搭建手写识别系统,而是帮助理解 KNN。

2.2 编程实现步骤

(1)将图片(txt 文本)转为一个向量,即32*32的数组转化为1*1024的数组(特征向量)

(2)将特征向量转化为矩阵

(3)计算每个测试集中的特征向量和训练集中的特征向量的距离,选取距离较小的前 k 个,该特征向量对应的图片数字为 k 个图片中出现次数最多的那个数字。

2.3 具体代码

(1)转化为1*1024特征向量

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

(2)计算欧式距离,返回测试图片的类别

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]                  
    diffMat = tile(inX, (dataSetSize,1)) - dataSet   # shape[0]得出dataSet的行数,即样本个数   
    sqDiffMat = diffMat**2                           # tile(A,(m,n))将数组A作为元素构造m行n列的数组
    sqDistances = sqDiffMat.sum(axis=1)                  
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()         # array.argsort(),得到每个元素的排序序号   
    classCount={}                                    # sortedDistIndicies[0]表示排序后排在第一个的那个数在原来数组中的下标  
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 # 从字典中获取key对应的value,没有key的话返回0
    # sorted()函数,按照第二个元素即value的次序逆向(reverse=True)排序  
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

(3)将每个向量合成矩阵,并对测试集中的每个样本分类

def handwritingClassTest():
    hwLabels = []
    # os模块中的listdir('str')可以读取目录str下的所有文件名,返回一个字符串列表  
    trainingFileList = listdir('trainingDigits')          
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]                  
        fileStr = fileNameStr.split('.')[0]                
        classNumStr = int(fileStr.split('_')[0])          
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    
    # 逐一读取测试图片,同时将其分类 
    testFileList = listdir('testDigits')       
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]     
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
        if (classifierResult != classNumStr): 
            errorCount += 1.0
    print("\nthe total number of errors is: %d" % errorCount)
    print("\nthe total error rate is: %f" % (errorCount/float(mTest)))
3 运行结果

    进入模块所在的文件夹,打开  Spyder,运行模块。然后在  Ipython 控制台输入以下代码:

import KNN
KNN.handwritingClassTest()

    得到以下结果:

python 实现 KNN 分类器——手写识别

    在 k = 3 的时候,错误率为1.2%。


参考资料:

《机器学习实战》




推荐阅读
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 深入理解Tornado模板系统
    本文详细介绍了Tornado框架中模板系统的使用方法。Tornado自带的轻量级、高效且灵活的模板语言位于tornado.template模块,支持嵌入Python代码片段,帮助开发者快速构建动态网页。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文详细介绍了Java中org.eclipse.ui.forms.widgets.ExpandableComposite类的addExpansionListener()方法,并提供了多个实际代码示例,帮助开发者更好地理解和使用该方法。这些示例来源于多个知名开源项目,具有很高的参考价值。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 掌握远程执行Linux脚本和命令的技巧
    本文将详细介绍如何利用Python的Paramiko库实现远程执行Linux脚本和命令,帮助读者快速掌握这一实用技能。通过具体的示例和详尽的解释,让初学者也能轻松上手。 ... [详细]
  • 本文介绍如何使用 Python 提取和替换 .docx 文件中的图片。.docx 文件本质上是压缩文件,通过解压可以访问其中的图片资源。此外,我们还将探讨使用第三方库 docx 的方法来简化这一过程。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 本文介绍如何使用Python进行文本处理,包括分词和生成词云图。通过整合多个文本文件、去除停用词并生成词云图,展示文本数据的可视化分析方法。 ... [详细]
author-avatar
玉龙惊云诱惑_786_286
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有