热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python爬取知乎话题图片(python爬取知乎回答)

本文目录一览:1、request库用python3怎么伪装header爬取知乎

本文目录一览:


  • 1、request库用python3怎么伪装header爬取知乎


  • 2、python爬取知乎首页问题


  • 3、Python爬虫可以爬取什么


  • 4、Python爬取知乎与我所理解的爬虫与反爬虫


  • 5、如何使用python爬取知乎数据并做简单分析

request库用python3怎么伪装header爬取知乎

python网页抓取功能非常强大,使用urllib或者urllib2可以很轻松的抓取网页内容。但是很多时候我们要注意,可能很多网站都设置了防采集功能,不是那么轻松就能抓取到想要的内容。

python爬取知乎首页问题

唔 可能是你没有登录成功啊

因为发现-知乎这个链接是不用登录就能抓的

但是这个知乎没有登录不行

看了下知乎登录不是这么简单的 你没有登录成功

Python爬虫可以爬取什么

Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:

如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

知乎:爬取优质答案,为你筛选出各话题下最优质的内容。

淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。

雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。

爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。

1.学习 Python 包并实现基本的爬虫过程

2.了解非结构化数据的存储

3.学习scrapy,搭建工程化爬虫

4.学习数据库知识,应对大规模数据存储与提取

5.掌握各种技巧,应对特殊网站的反爬措施

6.分布式爬虫,实现大规模并发采集,提升效率

学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。

了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.

分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。

以上就是我的回答,希望对你有所帮助,望采纳。

Python爬取知乎与我所理解的爬虫与反爬虫

关于知乎验证码登陆的问题,用到了Python上一个重要的图片处理库PIL,如果不行,就把图片存到本地,手动输入。

通过对知乎登陆是的抓包,可以发现登陆知乎,需要post三个参数,一个是账号,一个是密码,一个是xrsf。

这个xrsf隐藏在表单里面,每次登陆的时候,应该是服务器随机产生一个字符串。所有,要模拟登陆的时候,必须要拿到xrsf。

用chrome (或者火狐 httpfox 抓包分析)的结果:

所以,必须要拿到xsrf的数值,注意这是一个动态变化的参数,每次都不一样。

拿到xsrf,下面就可以模拟登陆了。

使用requests库的session对象,建立一个会话的好处是,可以把同一个用户的不同请求联系起来,直到会话结束都会自动处理COOKIEs。

注意:COOKIEs 是当前目录的一个文件,这个文件保存了知乎的COOKIE,如果是第一个登陆,那么当然是没有这个文件的,不能通过COOKIE文件来登陆。必须要输入密码。

这是登陆的函数,通过login函数来登陆,post 自己的账号,密码和xrsf 到知乎登陆认证的页面上去,然后得到COOKIE,将COOKIE保存到当前目录下的文件里面。下次登陆的时候,直接读取这个COOKIE文件。

这是COOKIE文件的内容

以下是源码:

运行结果:

反爬虫最基本的策略:

爬虫策略:

这两个都是在http协议的报文段的检查,同样爬虫端可以很方便的设置这些字段的值,来欺骗服务器。

反爬虫进阶策略:

1.像知乎一样,在登录的表单里面放入一个隐藏字段,里面会有一个随机数,每次都不一样,这样除非你的爬虫脚本能够解析这个随机数,否则下次爬的时候就不行了。

2.记录访问的ip,统计访问次数,如果次数太高,可以认为这个ip有问题。

爬虫进阶策略:

1.像这篇文章提到的,爬虫也可以先解析一下隐藏字段的值,然后再进行模拟登录。

2.爬虫可以使用ip代理池的方式,来避免被发现。同时,也可以爬一会休息一会的方式来降低频率。另外,服务器根据ip访问次数来进行反爬,再ipv6没有全面普及的时代,这个策略会很容易造成误伤。(这个是我个人的理解)。

通过COOKIE限制进行反爬虫:

和Headers校验的反爬虫机制类似,当用户向目标网站发送请求时,会再请求数据中携带COOKIE,网站通过校验请求信息是否存在COOKIE,以及校验COOKIE的值来判定发起访问请求的到底是真实的用户还是爬虫,第一次打开网页会生成一个随机COOKIE,如果再次打开网页这个COOKIE不存在,那么再次设置,第三次打开仍然不存在,这就非常有可能是爬虫在工作了。

反爬虫进进阶策略:

1.数据投毒,服务器在自己的页面上放置很多隐藏的url,这些url存在于html文件文件里面,但是通过css或者js使他们不会被显示在用户看到的页面上面。(确保用户点击不到)。那么,爬虫在爬取网页的时候,很用可能取访问这个url,服务器可以100%的认为这是爬虫干的,然后可以返回给他一些错误的数据,或者是拒绝响应。

爬虫进进阶策略:

1.各个网站虽然需要反爬虫,但是不能够把百度,谷歌这样的搜索引擎的爬虫给干了(干了的话,你的网站在百度都说搜不到!)。这样爬虫应该就可以冒充是百度的爬虫去爬。(但是ip也许可能被识破,因为你的ip并不是百度的ip)

反爬虫进进进阶策略:

给个验证码,让你输入以后才能登录,登录之后,才能访问。

爬虫进进进阶策略:

图像识别,机器学习,识别验证码。不过这个应该比较难,或者说成本比较高。

参考资料:

廖雪峰的python教程

静觅的python教程

requests库官方文档

segmentfault上面有一个人的关于知乎爬虫的博客,找不到链接了

如何使用python爬取知乎数据并做简单分析

一、使用的技术栈:

爬虫:python27 +requests+json+bs4+time

分析工具: ELK套件

开发工具:pycharm

数据成果简单的可视化分析

1.性别分布

0 绿色代表的是男性 ^ . ^

1 代表的是女性

-1 性别不确定

可见知乎的用户男性颇多。

二、粉丝最多的top30

粉丝最多的前三十名:依次是张佳玮、李开复、黄继新等等,去知乎上查这些人,也差不多这个排名,说明爬取的数据具有一定的说服力。

三、写文章最多的top30

四、爬虫架构

爬虫架构图如下:

说明:

选择一个活跃的用户(比如李开复)的url作为入口url.并将已爬取的url存在set中。

抓取内容,并解析该用户的关注的用户的列表url,添加这些url到另一个set中,并用已爬取的url作为过滤。

解析该用户的个人信息,并存取到本地磁盘。

logstash取实时的获取本地磁盘的用户数据,并给elsticsearchkibana和elasticsearch配合,将数据转换成用户友好的可视化图形。

五、编码

爬取一个url:

解析内容:

存本地文件:

代码说明:

* 需要修改获取requests请求头的authorization。

* 需要修改你的文件存储路径。

源码下载:点击这里,记得star哦!https : // github . com/forezp/ZhihuSpiderMan六、如何获取authorization

打开chorme,打开https : // www. zhihu .com/,

登陆,首页随便找个用户,进入他的个人主页,F12(或鼠标右键,点检查)七、可改进的地方

可增加线程池,提高爬虫效率

存储url的时候我才用的set(),并且采用缓存策略,最多只存2000个url,防止内存不够,其实可以存在redis中。

存储爬取后的用户我说采取的是本地文件的方式,更好的方式应该是存在mongodb中。

对爬取的用户应该有一个信息的过滤,比如用户的粉丝数需要大与100或者参与话题数大于10等才存储。防止抓取了过多的僵尸用户。

八、关于ELK套件

关于elk的套件安装就不讨论了,具体见官网就行了。网站:https : // www . elastic . co/另外logstash的配置文件如下:

从爬取的用户数据可分析的地方很多,比如地域、学历、年龄等等,我就不一一列举了。另外,我觉得爬虫是一件非常有意思的事情,在这个内容消费升级的年代,如何在广阔的互联网的数据海洋中挖掘有价值的数据,是一件值得思考和需不断践行的事情。


推荐阅读
  • 本文详细介绍了如何使用 Yii2 的 GridView 组件在列表页面实现数据的直接编辑功能。通过具体的代码示例和步骤,帮助开发者快速掌握这一实用技巧。 ... [详细]
  • 本文详细分析了JSP(JavaServer Pages)技术的主要优点和缺点,帮助开发者更好地理解其适用场景及潜在挑战。JSP作为一种服务器端技术,广泛应用于Web开发中。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • c# – UWP:BrightnessOverride StartOverride逻辑 ... [详细]
  • 使用 Azure Service Principal 和 Microsoft Graph API 获取 AAD 用户列表
    本文介绍了一段通用代码示例,该代码不仅能够操作 Azure Active Directory (AAD),还可以通过 Azure Service Principal 的授权访问和管理 Azure 订阅资源。Azure 的架构可以分为两个层级:AAD 和 Subscription。 ... [详细]
  • 深入解析Spring Cloud Ribbon负载均衡机制
    本文详细介绍了Spring Cloud中的Ribbon组件如何实现服务调用的负载均衡。通过分析其工作原理、源码结构及配置方式,帮助读者理解Ribbon在分布式系统中的重要作用。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
author-avatar
手机用户2502920645
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有