python中sina是正弦函数。据查询相关信息显示,sina函数功能用于计算出x弧度所对应的的正弦值sina的函数语法为math.sin(x)。Python由荷兰数学和计算机科学研究学会的GuidovanRossum于1990年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。
使用python的matplotlib画正弦函数图像,还要用到numpy库,代码如下9行所示:
import numpy as np;
from matplotlib import pyplot as plt;
fig = plt.figure();
ax2= fig.add_subplot(111);
x=np.arange(0,100)/10;
y=np.sin(x);
ax2.plot(x,y);
plt.savefig('sine.png');
plt.show();
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
1.基本概念
多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式的回归分析方法。如果自变量只有一个 时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。

1.在一元回归分析中,如果依变量y与自变量x的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。
2.多项式回归的最大优点就是可以通过增加x的高次项对实测点进行逼近,直至满意为止。
3.事实上,多项式回归可以处理相当一类非线性问题,它在回归分析 中占有重要的地位,因为任一函数都可以分段用多项式来逼近。

2.实例
我们在前面已经根据已知的房屋成交价和房屋的尺寸进行了线 性回归,继而可以对已知房屋尺寸,而未知房屋成交价格的实例进行了成 交价格的预测,但是在实际的应用中这样的拟合往往不够好,因此我们在 此对该数据集进行多项式回归。
目标:对房屋成交信息建立多项式回归方程,并依据回归方程对房屋价格进行预测

import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
#导入线性模型和多项式特征构造模块
from sklearn.preprocessing import PolynomialFeatures
datasets_X =[]
datasets_Y =[]
fr =open('prices.txt','r')
#一次读取整个文件。
lines =fr.readlines()
#逐行进行操作,循环遍历所有数据
for line in lines:
#去除数据文件中的逗号
items =line.strip().split(',')
#将读取的数据转换为int型,并分别写入datasets_X和datasets_Y。
datasets_X.append(int(items[0]))
datasets_Y.append(int(items[1]))
#求得datasets_X的长度,即为数据的总数。
length =len(datasets_X)
#将datasets_X转化为数组, 并变为二维,以符合线性回 归拟合函数输入参数要求
datasets_X= np.array(datasets_X).reshape([length,1])
#将datasets_Y转化为数组
datasets_Y=np.array(datasets_Y)
minX =min(datasets_X)
maxX =max(datasets_X)
#以数据datasets_X的最大值和最小值为范围,建立等差数列,方便后续画图。
X=np.arange(minX,maxX).reshape([-1,1])
#degree=2表示建立datasets_X的二 次多项式特征X_poly。
poly_reg =PolynomialFeatures(degree=2)
X_ploy =poly_reg.fit_transform(datasets_X)
lin_reg_2=linear_model.LinearRegression()
lin_reg_2.fit(X_ploy,datasets_Y)
#查看回归方程系数
print('Cofficients:',lin_reg_2.coef_)
#查看回归方程截距
print('intercept',lin_reg_2.intercept_)
plt.scatter(datasets_X,datasets_Y,color='red')
plt.plot(X,lin_reg_2.predict(poly_reg.fit_transform(X)),color='blue')
plt.xlabel('Area')
plt.ylabel('Price')
plt.show()
运行结果:
Cofficients: [0.00000000e+00 4.93982848e-02 1.89186822e-05]
intercept 151.8469675050044
通过多项式回归拟合的曲线与 数据点的关系如下图所示。依据该 多项式回归方程即可通过房屋的尺 寸,来预测房屋的成交价格。

文章知识点与官方知识档案匹配
Python入门技能树人工智能基于Python的监督学习
194396 人正在系统学习中
打开CSDN,阅读体验更佳
基于Python的多项式拟合方法_飘羽的博客_python 多项式...
基于Python的多项式拟合方法 1. 直接上代码进行介绍 __author__ ='Administrator' # coding=utf8 # 导入相关包 importmatplotlib.pyplotasplt importnumpyasnp frompandasimportread_csv fromsklearn.metricsimportr2_score...
继续访问
python机器学习 | 多项式回归和拟合_Claire_chen_jia的博客...
多项式回归中,加入了特征的更高次方(例如平方项或立方项),也相当于增加了模型的自由度,用来捕获数据中非线性的变化。 多项式拟合lm_sklearn之多项式回归 weixin_34419561的博客 601 '''多项式回归:若希望回归模型更好的拟合训练样本...
继续访问
最新发布 Python回归预测建模实战-多项式回归预测房价(附源码和实现效果)
Python回归预测建模实战-多项式回归预测房价(附源码和实现效果)
继续访问

sklearn实现非线性回归模型
sklearn实现非线性回归模型 前言: sklearn实现非线性回归模型的本质是通过线性模型实现非线性模型,如何实现呢?sklearn就是先将非线性模型转换为线性模型,再利用线性模型的算法进行训练模型。 一、线性模型解决非线性模型的思想 1、样本数据如下 x y 1 45000 2 50000 3 60000 4 80000 5 110000 6 15000...
继续访问

多项式拟合,模型的复杂度以及权重的变化_今晚打佬虎的博客...
sklearn,提供了多项式特征的方法: fromsklearn.preprocessingimportPolynomialFeatures X=np.arange(6).reshape(3,2)poly=PolynomialFeatures(2)poly.fit_transform(X)array([[1.,0.,1.,0.,0.,1.],[1.,2.,3.,4.,6.,9...
继续访问
python数据处理三:使用sklearn实现曲线拟合_耐心的小黑的博客-CSDN博 ...
from sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeaturesimport numpy as npimport matplotlib.pyplot as plt#获取待拟合数据x = np.linspace(1, 50, 50)f = np.poly1d([2,5,10])y ...
继续访问
机器学习(十)线性多项式回归之房价与房屋尺寸关系
一.线性回归 (1)线性回归 线性回归(Linear Regression)是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分 析方法。 线性回归利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归 线性回归:使用形如y=w T x+b的线性模型拟合数据输入和输出之间的映射关系的。 线性回归有很多实际的用途,分为以下两类: 1.如果目标是预测或者映射,线性回归可以用来对观测数据集的y和X的值拟合出一个预测模型。
python完成非线性拟合
在之前的博客"使用python来完成数据的线性拟合"当中,介绍了基于python,使用三种方法完成线性拟合的理论和代码实现。同样经常会碰到样本分布呈现非线性关系的情况,那么如何拟合出来呢?本文侧重对数据已经有建模,但是准确的关系需要得以确定的情况。 如果想直接求出拟合系数,而不清楚原本模型的话,直接利用theta = np.polyfit(X, Y_noise, deg=4)得到y=a*x^4+b*x^3+c*x^2+d方程的theta=[a,b,c,d]。这里deg=4表...
继续访问

sklearn实现多项式回归_盛夏未来的博客
sklearn实现多项式回归 多项式回归 一个数据集,用散点图画出来如下图,可以看到此时用一条直线(或者超平面)是不能拟合的,所以需要用一个多项式表示的曲线(或者超曲面)才能得到更好的拟合结果。
继续访问
多项式回归+房价与房屋尺寸的非线性拟合
多项式回归 多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式的回归分析方法。如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。 在一元回归分析中,如果依变量y与自变量X的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。后续的实例就是这个例子。 多项式回归的最大优点就是可以通过增加X的高次...
继续访问
Python机器学习应用 | 多项式回归
1 多项式回归多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式的回归分析方法。如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。 在一元回归分析中,如果依变量y与自变量x的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。 多项式回归的最大优点就是可以通过增加x的高次项对实测点进行逼近,直
继续访问
多项式拟合lm_sklearn之多项式回归
'''多项式回归:若希望回归模型更好的拟合训练样本数据,可以使用多项式回归器。一元多项式回归:数学模型:y = w0 + w1 * x^1 + w2 * x^2 + .... + wn * x^n将高次项看做对一次项特征的扩展得到:y = w0 + w1 * x1 + w2 * x2 + .... + wn * xn那么一元多项式回归即可以看做为多元线性回归,可以使用LinearRegressio...
继续访问
sklearn多项式拟合
继续访问
【Scikit-Learn】多项式拟合
%matplotlib inline import matplotlib.pyplot as plt import numpy as np n_dots = 20 x = np.linspace(0, 1, n_dots) # [0, 1] 之间创建 20 个点 y = np.sqrt(x) + 0.2*np.random.rand(n_dots) - 0....
继续访问
python 非线性多项式拟合_浅析多项式回归与sklearn中的Pipeline
0x00 前言 之前我们介绍了简单线性回归,其输入特征只有一维,即:;推广到多维特征,即多元线性回归:。但是在线性回归的背后是有一个很强的假设条件:数据存在线性关系。但是更多的数据之间具有非线性关系。因此对线性回归法进行改进,使用多项式回归法,可以对非线性数据进行处理。0x01 什么是多项式回归 研究一个因变量与一个或多个自变量间多项式的回归分析方法,称为多项式回归(Polynomial...
继续访问

机器学习-sklearn-多项式回归-对函数拟合-看学习曲线(均方误差MSE)-pipeline
python sklearn pipeline做函数拟合,-看学习曲线(均方误差MSE)
继续访问

sklearn实现多项式回归
1)生成数据集 import numpy as np import matplotlib.pyplot as plt n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5 # X = np.linspace(-3,3,n_train+n_test) X = np.random.normal(size=(n_train...
继续访问
多项式回归
线性回归只能拟合简单的 线性问题,当现在数据的复杂程度不能使用线性拟合,这时要考虑非线性拟合。现在考虑一种最简单的非线性拟合--多项式回归。 多项式回归的含义是直接从线性回归过度到非线性,简单的做法可以将原来的特征的幂次方作为一个新的特征,这样随着特征的逐渐复杂,它也能够解决非线性数据的拟合问题,这种从线性特征集上扩展过来的模型,称为多项式回归。 首先创建非线性带噪声的数据集 import...
继续访问

sklearn多项式回归
# -*- coding: utf-8 -*- """ Created on Mon Jan 29 22:57:10 2018 @author: Administrator """ import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression#导入线性回归
继续访问
【机器学习】多项式回归python实现
使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理。 使用一个简单的数据集来模拟,只有几条数据。 代码 从数据集中读取X和y。 为X添加二次方项,用Z替换。 给Z添加 1 列,初始化为 1 ,用来求偏置项。 划分训练集和测试集。 将Z和y的训练集转换为矩阵形式。 和线性回归类似,使用正规方程法,先验证矩阵的可逆性。 去掉Z中全为1的列。 使用测试集...
继续访问

sklearn线性回归完成多次项函数和正弦函数拟合
这样两个式子,使用sklearn 线性回归进行拟合 直接上代码 得到结果:score : 0.9902512046606555 mse : 7940.310765934783画图结果:对于正玄曲线原始数据画图 degree定成三阶拟合图 degree定成二阶拟合图degree定成六阶拟合图,效果非常好,但不知道是不是有点过拟合了、? 话不多说,直接上代码:...
继续访问

热门推荐 python运用sklearn进行数据拟合和回归
在上一篇讲了最小二乘法实现线性回归的原理,实现方面用的是python的static.optimize中的leastsq求出拟合函数。本篇通过sklearn库中的模块来进行拟合和线性回归,并计算拟合误差。 对于线性回归来说,无论是用什么工具实现,步骤都是大同小异的: 初始化多项式方程 对多项式方程进行多次迭代,通过最小二乘法求出使平方损失函数最小情况下的拟合方程。 对模型预测结果进行评估 调整参数...
继续访问

sklearn-多项式回归
import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression #载入数据 data = np.genfromtxt("job.csv",delim...
继续访问
[机器学习与scikit-learn-31]:算法-回归-线性模拟拟合拟合非线性数据-概述
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客 本文网址: 目录 第1章 什么是线性与非线性关系 1.1 描述对象 1.2 什么是线性与非线性关系 第2章 数据(分布)的线性与非线性 2.1 什么是线性与非线性数据(拟合、模拟回归) 2.2什么是线性与非线性可分数据(分类、逻辑回归) 2.3 分类问题的拟合表达 第3章 模型的线性与非线性 3.1 线性模型 3.2 特定的非线性模型 3.3 通用的非线性模型:多项式非线性模型(Polyn.
继续访问
首先分两种情况:
1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可。
2.在.py文件中编写,结束函数只需要不再缩进即可
调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以
r=functionA(var1)
附:测试代码(python3运行通过)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()
任意波形的生成 (geneartion of arbitrary waveform) 在商业,军事等领域都有着重要的应用,诸如空间光通信 (free-space optics communication), 高速信号处理 (high-speed signal processing),雷达 (radar) 等。在任意波形生成后, 如何评估生成的任意波形 成为另外一个重要的话题。
假设有一组实验数据,已知他们之间的函数关系:y=f(x),通过这些信息,需要确定函数中的一些参数项。例如,f 是一个线型函数 f(x)=k*x+b,那么参数 k 和 b 就是需要确定的值。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最小:
这种算法被称之为 最小二乘拟合 (least-square fitting)。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数 leastsq 。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在 Python科学计算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 对数字示波器采集的三角波数据导入进行了介绍,今天,就以 4GHz三角波 波形的拟合为案例介绍任意波形的拟合方法。
在 Python科学计算——如何构建模型? 一文中,讨论了如何构建三角波模型。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数 ,最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征。但在波形拟合时,并不是所有的特征参数都要纳入考量,例如,噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时,不应将噪声参数纳入考量,最终模型如下:
在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:
有时候,为了使图片有更好的效果,需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后,用拟合后的相应数据对 p0 进行修正。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差 (root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形: