热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python可以在苹果系统上装吗_在MacOSX装不上TensorFlow?看了这篇就会装

雷锋网按:本文原作者Enachan。本文原载于作者的GitHub。译者投稿,雷锋网(公众号:雷锋网)版权所有。这个文档说明了如何在Mac

雷锋网按:本文原作者Enachan。本文原载于作者的GitHub。译者投稿,雷锋网(公众号:雷锋网)版权所有。

这个文档说明了如何在 Mac OS X 上安装 TensorFlow。注意:从 1.2 版本开始,在 Mac OS X 上 TensorFlow 不再支持 GPU。

确定如何安装 TensorFlow

你可以选择一种方式安装 TensorFlow,支持下面的几种选择:virtualenv

"本地" pip

Docker

从源代码安装,更专业有单独的文档记录

我们建议使用 virtualenv 安装。virtualenv是一个和其它 Python 项目开发隔离的虚拟 Python 环境,在同一台机器上不会干扰也不会被其它程序影响。virtualenv 安装过程中,你不仅仅安装了 TensorFlow 还有它的所有依赖包。(事实上这很简单)要开始使用 TensorFlow,你需要 “启动” virtualenv 环境。总而言之,virtualenv 提供了一个安全可靠的 TensorFlow 安装和运行机制。

本地 pip 安装 TensorFlow 不经过任何容器或者虚拟环境系统直接装到了系统上,由于本地 pip 安装没被关闭,pip 安装会干扰或者影响系统上其它有 Python 依赖的安装。而且,如果要通过本地 pip 安装,你需要禁用系统完整性保护(SIP)。然而,如果你了解 SIP,pip 和 你的 Python 环境,本地 pip 安装相对容易执行。

Docker 可使 TensorFlow 的安装完全脱离于机器上的其它已存在的包,Docker 容器包括 TensorFlow 和它的所有依赖。注意 Docker 镜像可能很大(几百 M)。如果你已将 TensorFlow 集成到使用了 Docker 的大型应用架构中可以选择 Docker 安装。

选择 Anaconda,你可以使用 conda 创建一个虚拟环境,我们建议使用 pip install 命令而不是 coda install 命令安装 TensorFlow。注意:coda 包是社区而不是官方支持,也就是说,TensorFlow 团队既不测试也不维护 conda 包,如果使用风险自己承担。

使用 virtualenv 安装

按照以下步骤安装 TensorFlow:打开终端(一个 shell),你将在这个终端中执行随后的步骤

通过以下命令安装 pip 和 virtualenv:$ sudo easy_install pip

$ sudo pip install --upgrade virtuale

3. 执行以下任一命令创建虚拟环境:$ virtualenv --system-site-packages targetDirectory # for Python 2.7

$ virtualenv --system-site-packages -p python3 targetDirectory # for Python 3.n

targetDirectory 因虚拟环境根路径而异,我们的命令假使 targetDirectory 是 ~/tensorflow,但你可以选择任一目录。

4. 执行任一命令激活虚拟环境:$ source ~/tensorflow/bin/activate # If using bash, sh, ksh, or zsh

$ source ~/tensorflow/bin/activate.csh # If using csh or tcs

上面的 source 命令应该将提示符改成了下面这样:(tensorFlow)$

5. 如果已经安装了 pip 8.1 或者更新的版本,执行以下任一命令在激活的虚拟环境中安装 TensorFlow 及其所有依赖:$ pip install --upgrade tensorflow # for Python 2.7

$ pip3 install --upgrade tensorflow # for Python 3.n

如果前面的命令执行成功了,跳过步骤 6;如果失败了,再执行步骤 6。

6. 可选,如果步骤 5 失败了(一般是因为你使用了低于 8.1 版本的 pip),执行以下任一命令在激活的虚拟环境中安装 TensorFlow:$ pip install --upgrade tfBinaryURL # Python 2.7

$ pip3 install --upgrade tfBinaryURL # Python 3.n

tfBinaryURL 是 Tensorflow 包的 URL,准确的 tfBinaryURL 值因操作系统和 Python 版本而异,在 [这里](#TensorFlow Python 包 URL) 找到和你系统相关的 tfBinaryURL 值。例如,你要在 Mac OS X 上安装 Python 2.7 对应的 Tensorflow 版本,在虚拟环境中安装 Tensorflow 就执行下面的命令:$ pip3 install --upgrade \

https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl

如果安装过程中遇到麻烦,参考常见安装问题。

下一步

安装完成后,验证你的安装是否工作正常。

注意,每打开一个新的 shell 使用 TensorFlow 都必须激活虚拟环境。如果当前虚拟环境没有被激活(也就是提示符不是 tensorflow),执行以下任一命令:$ source ~/tensorflow/bin/activate # bash, sh, ksh, or zsh

$ source ~/tensorflow/bin/activate.csh # csh or tcsh

你的提示符变成下面这样说明 tensorflow 环境已经激活:(tensorflow)$

当虚拟环境激活后,你可以在这个 shell 中运行 TensorFlow 程序。如果你不再使用 TensorFlow,可以通过下面命令退出环境:(tensorflow)$ deactivate

提示符将会恢复到默认的(在 PS1 中定义的)。

卸载 TensorFlow

如果你想卸载 TensorFlow,简单地移除你创建的目录。例如:$ rm -r ~/tensorflow

使用本地 pip 安装

我们已经将 TensorFlow 二进制文件上传到了 PyPI,因此你可以通过 pip 安装, REQUIRED_PACKAGES section of setup.py 文件列出了 pip 将要安装或升级的包。

必备: Python

要安装 TensorFlow,你的系统必须依据安装了以下任一 Python 版本:Python 2.7

Python 3.3+

如果你的系统还没有安装符合以上版本的 Python,现在安装。

安装 Python,你可能需要禁用系统完整性保护(SIP)来获得从 Mac App Store 外安装软件的许可。

必备: pip

Pip 安装和管理 Python 写的软件包,如果你要使用本地 pip 安装,系统上必须安装下面的任一 pip 版本:pip, for Python 2.7

pip3, for Python 3.n.

pip 或者 pip3 可能在你安装 Python 的时候已经安装了,执行以下任一命令确认系统上是否安装了 pip 或 pip3:$ pip -V # for Python 2.7

$ pip3 -V # for Python 3.n

我们强烈建议使用 pip 或者 pip3 为 8.1 或者更新的版本安装 TensorFlow,如果没有安装,执行以下任一命令安装或更新:$ sudo easy_install --upgrade pip

$ sudo easy_install --upgrade six

安装 TensorFlow

假设你的 Mac 上已经装好了必备的程序,按照以下步骤执行:执行以下任一命令安装 TensorFlow:$ pip install tensorflow # Python 2.7; CPU support

$ pip3 install tensorflow # Python 3.n; CPU support

如果上面的命令执行完成,现在可以验证你的安装了。

2. (可选的) 如果步骤 1 失败了,执行下面的命令安装最新版本 TensorFlow:$ sudo pip install --upgrade tfBinaryURL # Python 2.7

$ sudo pip3 install --upgrade tfBinaryURL # Python 3.n

tfBinaryURL 是 Tensorflow 包的 URL,准确的 tfBinaryURL 值因操作系统和 Python 版本而异,在这里找到和你系统相关的 tfBinaryURL 值。例如,你要在 Mac OS X 上安装 Python 2.7 对应的 Tensorflow 版本,在虚拟环境中安装 Tensorflow 就执行下面的命令:$ sudo pip3 install --upgrade \

https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl

如果以上命令运行失败,参考 安装问题。

下一步

安装完成后,验证你的安装是否工作正常。

卸载 TensorFlow

如果要卸载 TensorFlow,执行下面的命令:$ pip uninstall tensorflow

$ pip3 uninstall tensorflow

使用 Docker 安装

按照以下步骤使用 Docker 安装 TensorFlow:

1. 按照 文档 在你的机器上安装 Docker

2. 启动任一个包含 TensorFlow 镜像的 Docker 容器

本节剩下部分解释如何启动 Docker 容器。

要启动包含 TensorFlow 镜像的 Docker 容器,执行以下命令:$ docker run -it -p hostPort:containerPort TensorFlowImage

where:-p hostPort:containerPort 是可选的,如果你想从 shell 运行 TensorFlow 程序忽略这个选项。如果你想从 Jupyter notebook 运行 TensorFlow 程序,hostPort 和 containerPort 都设置为 8888。如果你想在镜像中运行 TensorBoard,再添加一个-p参数,hostPort 和 containerPort 都设置为 6006。

TensorFlowImage 是需要的,它用于指定 Docker 容器,你必须指定接下来的任一一个:gcr.io/tensorflow/tensorflow: TensorFlow 二进制镜像,gcr.io/tensorflow/tensorflow:latest-devel: TensorFlow 二进制镜像加源码。

gcr.io 是 Goole 的容器注册表 (?),注意部分 TensorFlow 也可以从 dockerhub 获取。

例如,下面的命令可以在 Docker 容器中启动一个 TensorFlow CPU 镜像,然后你可以在镜像的 shell 中运行 TensorFlow 程序:$ docker run -it gcr.io/tensorflow/tensorflow bash

以下命令也可以在 Docker 容器中启动一个 TensorFlow CPU 镜像,然而,在这个 Docker 镜像中,你可以在 Jupyter notebook 中运行 TensorFlow 程序:$ docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow

Docker 将会先下载 TensorFlow 镜像然后启动它。

下一步

现在可以验证你的安装了。

使用 Anaconda 安装

Anaconda 安装只是社区而非官方支持

按照以下步骤在 Anaconda 环境中安装 TensorFlow:

1. 按照 Anaconda 下载站点 说明下载安装 Anaconda

2. 执行以下命令创建名为 tensorflow 的 conda 环境:$ conda create -n tensorflow

3. 执行以下命令激活 conda 环境:$ source activate tensorflow

(tensorflow)$ # Your prompt should change

4. 执行以下命令在你的 conda 环境中安装 TensorFlow:(tensorflow)$ pip install --ignore-installed --upgrade TF_PYTHON_URL

TF_PYTHON_URL 是TensorFlow Python包 的 URL,例如,以下命令是安装 Python 2.7 CPU-only 版本的 TensorFlow:(tensorflow)$ pip install --ignore-installed --upgrade \

https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl

验证你的安装

要验证你的 TensorFlow 安装,操作以下步骤:保证你的环境可以运行 TensorFlow 程序

运行一个小的 TensorFlow 程序

准备你的环境

如果你使用本地 pip, virtualenv 或者 Anaconda 安装,操作以下步骤:打开一个终端

如果你使用 virtualenv 或 Anaconda 安装,激活你的容器

如果你安装了 TensorFlow 源码,进到任何一个处了包含 TensorFlow 源码的目录

如果通过 Docker 安装,启动一个运行 bash 的 Docker 容器,例如:$ docker run -it gcr.io/tensorflow/tensorflow bash

运行一个小的 TensorFlow 程序

在一个 shell 中执行 Python:$ python

在 python 交互式 shell 中输入以下小程序:# Python

import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')

sess = tf.Session()print(sess.run(hello))

如果系统输出以下内容,你可以开始写 TensorFlow 程序了:Hello, TensorFlow!

如果系统输出错误信息而不是欢迎语,参考 常见安装问题。

常见安装问题

我们依据 Stack Overflow 记录 TensorFlow 安装问题和相应的解决方法。下面的表格包括 Stack Overflow 常见的安装问题回复链接,如果你遇到的错误信息或者其它安装问题不在表格中,请在 Stack Overflow 上搜索。如果 Stack Overflow 上没有你搜索的错误信息,提一个新问题并且打上 tensorflow 标签。Stack Overflow LinkError Message42006320ImportError: Traceback (most recent call last):File “…/tensorflow/core/framework/graph_pb2.py”, line 6, in from google.protobuf import descriptor as _descriptorImportError: cannot import name ‘descriptor’

33623453IOError: [Errno 2] No such file or directory: ‘/tmp/pip-o6Tpui-build/setup.py’

35190574SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed

42009190Installing collected packages: setuptools, protobuf, wheel, numpy, tensorflow Found existing installation: setuptools 1.1.6 Uninstalling setuptools-1.1.6: Exception: … [Errno 1] Operation not permitted: ‘/tmp/pip-a1DXRT-uninstall/…/lib/python/_markerlib’

33622019ImportError: No module named copyreg

37810228During a pip install operation, the system returns:OSError: [Errno 1] Operation not permitted

33622842An import tensorflow statement triggers an error such as the following:Traceback (most recent call last): File “”, line 1, in File “/usr/local/lib/python2.7/site-packages/tensorflow/init.py”, line 4, in from tensorflow.python import * … File “/usr/local/lib/python2.7/site-packages/tensorflow/core/framework/tensorshapepb2.py”, line 22, in serialized_pb=_b(‘\n,tensorflow/core/framework/tensor_shape.proto\x12\ntensorflow\”d\n\x10TensorShapeProto\x12-\n\x03\x64im\x18\x02 \x03(\x0b\x32 .tensorflow.TensorShapeProto.Dim\x1a!\n\x03\x44im\x12\x0c\n\x04size\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\tb\x06proto3’) TypeError: __init() got an unexpected keyword argument ‘syntax’

42075397A pip install command triggers the following error:…You have not agreed to the Xcode license agreements, please run’xcodebuild -license’ (for user-level acceptance) or’sudo xcodebuild -license’ (for system-wide acceptance) from within aTerminal window to review and agree to the Xcode license agreements…. File “numpy/core/setup.py”, line 653, in get_mathlib_info raise RuntimeError(“Broken toolchain: cannot link a simple C program”)RuntimeError: Broken toolchain: cannot link a simple C program

TensorFlow Python 包 URL

一些安装方法需要 TensorFlow Python 包的 URL,值与三个方面有关 (?):操作系统

Python 版本

本节记录了 Mac OS 安装相关的值

Python 2.7https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py2-none-any.whl

Python 3.4, 3.5, or 3.6https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.2.1-py3-none-any.whl

Protobuf pip package 3.1

如果你没有遇到 protobuf pip 包相关的问题可以跳过本节。

** 注意:** 如果你的 TensorFlow 运行很慢,可能是和 protobuf pip 包有关的问题。

TensorFlow pip 包依赖 protobuf pip 3.1 版本的包,从 PyPI 下载的 protobuf pip 包(在调用 pip install protobuf 时)是一个仅包含 Python 的库,其中包含执行速度比 C++ 实现慢 10 ~ 50 倍的原始序列化 / 反序列化的 Python 实现。 Protobuf 还支持包含基于快速 C++ 的原语解析的 Python 包的二进制扩展,此扩展在标准的仅 Python 专用 pip 包中不可用,我们为 protobuf 创建了一个包含二进制扩展名的自定义二进制 pip 包。要安装自定义二进制 protobuf pip 包,请调用以下命令之一:for Python 2.7:$ pip install --upgrade \

https://storage.googleapis.com/tensorflow/mac/cpu/protobuf-3.1.0-cp27-none-macosx_10_11_x86_64.whl

for Python 3.n:$ pip3 install --upgrade \

https://storage.googleapis.com/tensorflow/mac/cpu/protobuf-3.1.0-cp35-none-macosx_10_11_x86_64.whl

安装这些 protobuf 包将会覆盖已安装的包,注意二进制 pip 包已经支持大于 64M 的 protobufs,修复了如下报错:[libprotobuf ERROR google/protobuf/src/google/protobuf/io/coded_stream.cc:207]

A protocol message was rejected because it was too big (more than 67108864 bytes).

To increase the limit (or to disable these warnings), seeCodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.

雷锋网版权文章,未经授权禁止转载。详情见转载须知。

90



推荐阅读
  • 本文详细记录了在银河麒麟操作系统和龙芯架构上使用 Qt 5.15.2 进行项目打包时遇到的问题及解决方案,特别关注于 linuxdeployqt 工具的应用。 ... [详细]
  • This guide provides a comprehensive step-by-step approach to successfully installing the MongoDB PHP driver on XAMPP for macOS, ensuring a smooth and efficient setup process. ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 本文探讨了领域驱动设计(DDD)的核心概念、应用场景及其实现方式,详细介绍了其在企业级软件开发中的优势和挑战。通过对比事务脚本与领域模型,展示了DDD如何提升系统的可维护性和扩展性。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • Ralph的Kubernetes进阶之旅:集群架构与对象解析
    本文深入探讨了Kubernetes集群的架构和核心对象,详细介绍了Pod、Service、Volume等基本组件,以及更高层次的抽象如Deployment、StatefulSet等,帮助读者全面理解Kubernetes的工作原理。 ... [详细]
  • 从零开始构建完整手机站:Vue CLI 3 实战指南(第一部分)
    本系列教程将引导您使用 Vue CLI 3 构建一个功能齐全的移动应用。我们将深入探讨项目中涉及的每一个知识点,并确保这些内容与实际工作中的需求紧密结合。 ... [详细]
  • 本文详细介绍了 Java 中 org.apache.xmlbeans.SchemaType 类的 getBaseEnumType() 方法,提供了多个代码示例,并解释了其在不同场景下的使用方法。 ... [详细]
  • 实体映射最强工具类:MapStruct真香 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 探讨如何真正掌握Java EE,包括所需技能、工具和实践经验。资深软件教学总监李刚分享了对毕业生简历中常见问题的看法,并提供了详尽的标准。 ... [详细]
author-avatar
手机用户2602889447
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有