No1:
多进程
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
print(‘Run child process %s (%s)...‘ % (name, os.getpid()))
if __name__==‘__main__‘:
print(‘Parent process %s.‘ % os.getpid())
p = Process(target=run_proc, args=(‘test‘,))
print(‘Child process will start.‘)
p.start()
p.join()
print(‘Child process end.‘)
运行结果
创建一个Process
实例,用start()
方法启动,join()
方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。
No2:
进程池
from multiprocessing import Pool
import os, time, random
def long_time_task(name):
print(‘Run task %s (%s)...‘ % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print(‘Task %s runs %0.2f seconds.‘ % (name, (end - start)))
if __name__==‘__main__‘:
print(‘Parent process %s.‘ % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print(‘Waiting for all subprocesses done...‘)
p.close()
p.join()
print(‘All subprocesses done.‘)
运行结果
No3:
子进程
import subprocess
print(‘$ nslookup www.python.org‘)
r = subprocess.call([‘nslookup‘,‘www.python.org‘])
print(‘Exit code:‘,r)
运行结果
No4:
import subprocess
print(‘$ nslookup‘)
p=subprocess.Popen([‘nslookup‘],stdin=subprocess.PIPE,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
output,err=p.communicate(b‘set q=mx\npython.org\nexit\n‘)
print(output.decode(‘utf-8‘))
print(‘Exit code:‘,p.returncode)
运行结果
No5:
进程间通信
from multiprocessing import Process,Queue
import os,time,random
def write(q):
print(‘Process to write: %s‘ % os.getpid())
for value in[‘A‘,‘B‘,‘C‘]:
print(‘Put %s to queue...‘ % value)
q.put(value)
time.sleep(random.random())
def read(q):
print(‘Process to read: %s‘ % os.getpid())
while True:
value = q.get(True)
print(‘Get %s from queue.‘ % value)
if __name__==‘__main__‘:
q=Queue()
pw=Process(target=write,args=(q,))
pr=Process(target=read,args=(q,))
pw.start()
pr.start()
pw.join()
pr.terminate()
在Unix/Linux下,可以使用fork()
调用实现多进程。
要实现跨平台的多进程,可以使用multiprocessing
模块。
进程间通信是通过Queue
、Pipes
等实现的。
No6:
多线程
Python的标准库提供了两个模块:_thread
和threading
,_thread
是低级模块,threading
是高级模块,对_thread
进行了封装。绝大多数情况下,我们只需要使用threading
这个高级模块。
import time,threading
def loop():
print(‘thread %s is running...‘ % threading.current_thread().name)
n=0
while n<5:
n=n+1
print(‘thread %s >>> %s‘ % (threading.current_thread().name,n))
time.sleep(1)
print(‘thread %s ended.‘ % threading.current_thread().name)
print(‘thread %s is running...‘ % threading.current_thread().name)
t = threading.Thread(target=loop,name=‘LoopThread‘)
t.start()
t.join()
print(‘thread %s ended.‘ % threading.current_thread().name)
运行结果
No7:
锁Lock
import time,threading
blance=0
lock=threading.Lock()
def run_thread(n):
for i in range(100000):
lock.acquire()
try:
change_it(n)
finally:
lock.release()
死锁
import threading,multiprocessing
def loop():
x=0
while True:
x = x^1
for i in range(multiprocessing.cpu_count()):
t = threading.Thread(target=loop)
t.start()
Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。
所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。
不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。
No8:
ThreadLocal
import threading
local_school=threading.local
def process_student():
std = local_school.student
print(‘Hello,%s (in %s)‘ % (std,threading.current_thread().name))
def process_thread(name):
local_school.student=name
process_student()
t1=threading.Thread(target=process_thread,args=(‘Alice‘,),name=‘Thread-A‘)
t2=threading.Thread(target=process_thread,args=(‘Bob‘,),name=‘Thread-B‘)
t1.start()
t2.start()
t1.join()
t2.join()
No9:
分布式进程
# task_master.py
import random, time, queue
from multiprocessing.managers import BaseManager
# 发送任务的队列:
task_queue = queue.Queue()
# 接收结果的队列:
result_queue = queue.Queue()
# 从BaseManager继承的QueueManager:
class QueueManager(BaseManager):
pass
# 把两个Queue都注册到网络上, callable参数关联了Queue对象:
QueueManager.register(‘get_task_queue‘, callable=lambda: task_queue)
QueueManager.register(‘get_result_queue‘, callable=lambda: result_queue)
# 绑定端口5000, 设置验证码‘abc‘:
manager = QueueManager(address=(‘‘, 5000), authkey=b‘abc‘)
# 启动Queue:
manager.start()
# 获得通过网络访问的Queue对象:
task = manager.get_task_queue()
result = manager.get_result_queue()
# 放几个任务进去:
for i in range(10):
n = random.randint(0, 10000)
print(‘Put task %d...‘ % n)
task.put(n)
# 从result队列读取结果:
print(‘Try get results...‘)
for i in range(10):
r = result.get(timeout=10)
print(‘Result: %s‘ % r)
# 关闭:
manager.shutdown()
print(‘master exit.‘)
# task_worker.py
import time, sys, queue
from multiprocessing.managers import BaseManager
# 创建类似的QueueManager:
class QueueManager(BaseManager):
pass
# 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
QueueManager.register(‘get_task_queue‘)
QueueManager.register(‘get_result_queue‘)
# 连接到服务器,也就是运行task_master.py的机器:
server_addr = ‘127.0.0.1‘
print(‘Connect to server %s...‘ % server_addr)
# 端口和验证码注意保持与task_master.py设置的完全一致:
m = QueueManager(address=(server_addr, 5000), authkey=b‘abc‘)
# 从网络连接:
m.connect()
# 获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,并把结果写入result队列:
for i in range(10):
try:
n = task.get(timeout=1)
print(‘run task %d * %d...‘ % (n, n))
r = ‘%d * %d = %d‘ % (n, n, n*n)
time.sleep(1)
result.put(r)
except Queue.Empty:
print(‘task queue is empty.‘)
# 处理结束:
print(‘worker exit.‘)
【python】进程与线程