热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【python】进程与线程

No1:多进程运行结果创建一个Process实例,用start()方法启动,join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。No2:进程池运行结果No3:

No1:

多进程

from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
    print(Run child process %s (%s)... % (name, os.getpid()))

if __name__==__main__:
    print(Parent process %s. % os.getpid())
    p = Process(target=run_proc, args=(test,))
    print(Child process will start.)
    p.start()
    p.join()
    print(Child process end.)

运行结果

技术分享图片

创建一个Process实例,用start()方法启动,join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

No2:

进程池

from multiprocessing import Pool
import os, time, random

def long_time_task(name):
    print(Run task %s (%s)... % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print(Task %s runs %0.2f seconds. % (name, (end - start)))

if __name__==__main__:
    print(Parent process %s. % os.getpid())
    p = Pool(4)
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print(Waiting for all subprocesses done...)
    p.close()
    p.join()
    print(All subprocesses done.)

运行结果

技术分享图片

No3:

子进程

import subprocess

print($ nslookup www.python.org)
r = subprocess.call([nslookup,www.python.org])
print(Exit code:,r)

运行结果

技术分享图片

No4:

import subprocess

print($ nslookup)
p=subprocess.Popen([nslookup],stdin=subprocess.PIPE,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
output,err=p.communicate(bset q=mx\npython.org\nexit\n)
print(output.decode(utf-8))
print(Exit code:,p.returncode)

运行结果

技术分享图片

No5:

进程间通信

from multiprocessing import Process,Queue
import os,time,random

def write(q):
    print(Process to write: %s % os.getpid())
    for value in[A,B,C]:
        print(Put %s to queue... % value)
        q.put(value)
        time.sleep(random.random())
        
def read(q):
    print(Process to read: %s % os.getpid())
    while True:
        value = q.get(True)
        print(Get %s from queue. % value)
        
if __name__==__main__:
    q=Queue()
    pw=Process(target=write,args=(q,))
    pr=Process(target=read,args=(q,))
    pw.start()
    pr.start()
    pw.join()
    pr.terminate()

在Unix/Linux下,可以使用fork()调用实现多进程。

要实现跨平台的多进程,可以使用multiprocessing模块。

进程间通信是通过QueuePipes等实现的。

No6:

多线程

Python的标准库提供了两个模块:_threadthreading_thread是低级模块,threading是高级模块,对_thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

import time,threading

def loop():
    print(thread %s is running... % threading.current_thread().name)
    n=0
    while n<5:
        n=n+1
        print(thread %s >>> %s % (threading.current_thread().name,n))
        time.sleep(1)
    print(thread %s ended. % threading.current_thread().name)
    
print(thread %s is running... % threading.current_thread().name)
t = threading.Thread(target=loop,name=LoopThread)
t.start()
t.join()
print(thread %s ended. % threading.current_thread().name)

运行结果

技术分享图片

No7:

锁Lock

import time,threading

blance=0
lock=threading.Lock()

def run_thread(n):
    for i in range(100000):
        lock.acquire()
        try:
            change_it(n)
        finally:
            lock.release()

死锁

import threading,multiprocessing

def loop():
    x=0
    while True:
        x = x^1

for i in range(multiprocessing.cpu_count()):
    t = threading.Thread(target=loop)
    t.start()

Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。

GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。

不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。

No8:

ThreadLocal

import threading

local_school=threading.local

def process_student():
    std = local_school.student
    print(Hello,%s (in %s) % (std,threading.current_thread().name))
    
def process_thread(name):
    local_school.student=name
    process_student()

t1=threading.Thread(target=process_thread,args=(Alice,),name=Thread-A)
t2=threading.Thread(target=process_thread,args=(Bob,),name=Thread-B)
t1.start()
t2.start()
t1.join()
t2.join()

No9:

分布式进程

# task_master.py

import random, time, queue
from multiprocessing.managers import BaseManager

# 发送任务的队列:
task_queue = queue.Queue()
# 接收结果的队列:
result_queue = queue.Queue()

# 从BaseManager继承的QueueManager:
class QueueManager(BaseManager):
    pass

# 把两个Queue都注册到网络上, callable参数关联了Queue对象:
QueueManager.register(get_task_queue, callable=lambda: task_queue)
QueueManager.register(get_result_queue, callable=lambda: result_queue)
# 绑定端口5000, 设置验证码‘abc‘:
manager = QueueManager(address=(‘‘, 5000), authkey=babc)
# 启动Queue:
manager.start()
# 获得通过网络访问的Queue对象:
task = manager.get_task_queue()
result = manager.get_result_queue()
# 放几个任务进去:
for i in range(10):
    n = random.randint(0, 10000)
    print(Put task %d... % n)
    task.put(n)
# 从result队列读取结果:
print(Try get results...)
for i in range(10):
    r = result.get(timeout=10)
    print(Result: %s % r)
# 关闭:
manager.shutdown()
print(master exit.)
# task_worker.py

import time, sys, queue
from multiprocessing.managers import BaseManager

# 创建类似的QueueManager:
class QueueManager(BaseManager):
    pass

# 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
QueueManager.register(get_task_queue)
QueueManager.register(get_result_queue)

# 连接到服务器,也就是运行task_master.py的机器:
server_addr = 127.0.0.1
print(Connect to server %s... % server_addr)
# 端口和验证码注意保持与task_master.py设置的完全一致:
m = QueueManager(address=(server_addr, 5000), authkey=babc)
# 从网络连接:
m.connect()
# 获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,并把结果写入result队列:
for i in range(10):
    try:
        n = task.get(timeout=1)
        print(run task %d * %d... % (n, n))
        r = %d * %d = %d % (n, n, n*n)
        time.sleep(1)
        result.put(r)
    except Queue.Empty:
        print(task queue is empty.)
# 处理结束:
print(worker exit.)

【python】进程与线程


推荐阅读
  • 探讨了在HTML表单中使用元素代替进行表单提交的方法。 ... [详细]
  • 页面预渲染适用于主要包含静态内容的页面。对于依赖大量API调用的动态页面,建议采用SSR(服务器端渲染),如Nuxt等框架。更多优化策略可参见:https://github.com/HaoChuan9421/vue-cli3-optimization ... [详细]
  • 本报告记录了嵌入式软件设计课程中的第二次实验,主要探讨了使用KEIL V5开发环境和ST固件库进行GPIO控制及按键响应编程的方法。通过实际操作,加深了对嵌入式系统硬件接口编程的理解。 ... [详细]
  • 在使用 PyInstaller 将 Python 应用程序打包成独立的可执行文件时,若项目中包含动态加载的库或插件,需要正确配置 --hidden-import 和 --add-binary 参数,以确保所有依赖项均能被正确识别和打包。 ... [详细]
  • 本文介绍了一个来自AIZU ONLINE JUDGE平台的问题,即清洁机器人2.0。该问题来源于某次编程竞赛,涉及复杂的算法逻辑与实现技巧。 ... [详细]
  • 本文探讨了如何使用Scrapy框架构建高效的数据采集系统,以及如何通过异步处理技术提升数据存储的效率。同时,文章还介绍了针对不同网站采用的不同采集策略。 ... [详细]
  • 本文介绍了使用Python和C语言编写程序来计算一个给定数值的平方根的方法。通过迭代算法,我们能够精确地得到所需的结果。 ... [详细]
  • C/C++ 应用程序的安装与卸载解决方案
    本文介绍了如何使用Inno Setup来创建C/C++应用程序的安装程序,包括自动检测并安装所需的运行库,确保应用能够顺利安装和卸载。 ... [详细]
  • 本文提供了一个详尽的前端开发资源列表,涵盖了从基础入门到高级应用的各个方面,包括HTML5、CSS3、JavaScript框架及库、移动开发、API接口、工具与插件等。 ... [详细]
  • JavaScript 中引号的多层嵌套使用技巧
    本文详细介绍了在 JavaScript 编程中如何处理引号的多级嵌套问题,包括双引号、单引号以及转义字符的正确使用方法。 ... [详细]
  • Awk是一款功能强大的文本分析与处理工具,尤其在数据解析和报告生成方面表现突出。它通过读取由换行符分隔的记录,并按照指定的字段分隔符来划分和处理这些记录,从而实现复杂的数据操作。 ... [详细]
  • 深入解析Unity3D游戏开发中的音频播放技术
    在游戏开发中,音频播放是提升玩家沉浸感的关键因素之一。本文将探讨如何在Unity3D中高效地管理和播放不同类型的游戏音频,包括背景音乐和效果音效,并介绍实现这些功能的具体步骤。 ... [详细]
  • JavaScript 页面卸载事件详解 (onunload)
    当用户从页面离开时(如关闭页面或刷新页面),会触发 onunload 事件,此时可以执行预设的脚本。需要注意的是,不同的浏览器对 onunload 事件的支持程度可能有所不同。 ... [详细]
  • 本文探讨了使用普通生成函数和指数生成函数解决组合与排列问题的方法,特别是在处理特定路径计数问题时的应用。文章通过详细分析和代码实现,展示了如何高效地计算在给定条件下不相邻相同元素的排列数量。 ... [详细]
  • 本文探讨了如何利用RxJS库在AngularJS应用中实现对用户单击和拖动操作的精确区分,特别是在调整区域大小的场景下。 ... [详细]
author-avatar
asdfu_814
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有