热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python过拟合实例分析

本篇内容介绍了“python过拟合实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何

本篇内容介绍了“python过拟合实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

如下图便直观形象的展示出这种最严重的的过拟合情况:

python过拟合实例分析 

模型几乎拟合所有点,也就是在训练集上的准确度接近 100%,这类模型有什么特点呢?不妨看看这个模型的参数:

        1.24700471e-13, -2.35752755e-11,  2.06759733e-09, -1.11665116e-07,
        4.15722794e-06, -1.13161697e-04,  2.33087852e-03, -3.70886530e-02,
        4.61321531e-01, -4.50943817e+00,  3.46373724e+01, -2.07949995e+02,
        9.65158102e+02, -3.40164962e+03,  8.85765503e+03, -1.63366853e+04,
        1.99303609e+04, -1.41930185e+04,  4.37094529e+03,  2.87198980e+00

一共有 20 个,正好等于需要拟合的点数。

以上图形是用拉格朗日插值方法拟合出来的,借助 scipy 包完成插值,代码如下所示。

数据准备阶段:

from scipy.interpolate import lagrange
import numpy as np
import matplotlib.pyplot as plt

#使用样本个数
n = 20

# seed 保证每次都生成一个固定随机数
np.random.seed(2)
eps = np.random.rand(n) * 2

# 构造样本数据
x = np.linspace(0, 20, n)
y = np.linspace(2, 14, n) + eps

调用拉格朗日插值,得到插值函数 p,然后输入待插值点 x, 完成插值得到插值点(xx,yy)

# 调用拉格朗日插值,得到插值函数p
p = lagrange(x, y)
xx = x
yy = p(xx)

拉格朗日插值得到一个多项式模型,参数个数等于样本个数。

以上我们还原拟合所有样本点的一个方法。

机器学习中为了模型泛化能力更强,所以需要简化模型参数,换句话说对参数做正则化处理,这也符合奥卡姆剃刀定律,即简单有效原理。

常用的L1 正则会使参数稀疏化,它会将其中一些参数权重归 0. 当然就今天将要拟合的数据点而言,直接简化模型参数为 2个,拟合效果就不会差。

选用 sklearn 最最简单的线型回归模型:

from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(x.reshape(len(x),-1),y)

# 得到2个参数值
reg.coef_,reg.intercept_
(array([0.62182096]), 2.644854261121125)

再plot下拟合效果:

plt.figure(figsize=(12,8))
plt.scatter(x, y, color="r")
# 拉格朗日插值复杂模型
plt.plot(xx, yy, color="b",label='lagrange')
# 线型回归极简模型
plt.plot(xx,xx*reg.coef_+reg.intercept_,color='green',label='linear_model')
plt.show()
 
python过拟合实例分析

“python过拟合实例分析”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程笔记网站,小编将为大家输出更多高质量的实用文章!


推荐阅读
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 本文基于刘洪波老师的《英文词根词缀精讲》,深入探讨了多个重要词根词缀的起源及其相关词汇,帮助读者更好地理解和记忆英语单词。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ... [详细]
author-avatar
xl466581836
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有