热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python插补法_没有完美的数据插补法,只有最适合的

image大数据文摘出品编译:张秋玥、胡笳、夏雅薇数据缺失是数据科学家在处理数据时经常遇到的问题,本文作者基于不同的情境提供了相应的数据插补解决办法。没

image

大数据文摘出品

编译:张秋玥、胡笳、夏雅薇

数据缺失是数据科学家在处理数据时经常遇到的问题,本文作者基于不同的情境提供了相应的数据插补解决办法。没有完美的数据插补法,但总有一款更适合当下情况。

我在数据清理与探索性分析中遇到的最常见问题之一就是处理缺失数据。首先我们需要明白的是,没有任何方法能够完美解决这个问题。不同问题有不同的数据插补方法——时间序列分析,机器学习,回归模型等等,很难提供通用解决方案。在这篇文章中,我将试着总结最常用的方法,并寻找一个结构化的解决方法。

插补数据vs删除数据

在讨论数据插补方法之前,我们必须了解数据丢失的原因。

1、随机丢失(MAR,Missing at Random):随机丢失意味着数据丢失的概率与丢失的数据本身无关,而仅与部分已观测到的数据有关。

2、完全随机丢失(MCAR,Missing Completely at Random):数据丢失的概率与其假设值以及其他变量值都完全无关。

3、非随机丢失(MNAR,Missing not at Random):有两种可能的情况。缺失值取决于其假设值(例如,高收入人群通常不希望在调查中透露他们的收入);或者,缺失值取决于其他变量值(假设女性通常不想透露她们的年龄,则这里年龄变量缺失值受性别变量的影响)。

在前两种情况下可以根据其出现情况删除缺失值的数据,而在第三种情况下,删除包含缺失值的数据可能会导致模型出现偏差。因此我们需要对删除数据非常谨慎。请注意,插补数据并不一定能提供更好的结果。

image

删除

列表删除

按列表删除(完整案例分析)会删除一行观测值,只要其包含至少一个缺失数据。你可能只需要直接删除这些观测值,分析就会很好做,尤其是当缺失数据只占总数据很小一部分的时候。然而在大多数情况下,这种删除方法并不好用。因为完全随机缺失(MCAR)的假设通常很难被满足。因此本删除方法会造成有偏差的参数与估计。

newdata

In python

mydata.dropna(inplace=True)

成对删除

在重要变量存在的情况下,成对删除只会删除相对不重要的变量行。这样可以尽可能保证充足的数据。该方法的优势在于它能够帮助增强分析效果,但是它也有许多不足。它假设缺失数据服从完全随机丢失(MCAR)。如果你使用此方法,最终模型的不同部分就会得到不同数量的观测值,从而使得模型解释非常困难。

image

观测行3与4将被用于计算ageNa与DV1的协方差;观测行2、3与4将被用于计算DV1与DV2的协方差。

Pairwise Deletion

ncovMatrix

Listwise Deletion

ncovMatrix

删除变量

在我看来,保留数据总是比抛弃数据更好。有时,如果超过60%的观测数据缺失,直接删除该变量也可以,但前提是该变量无关紧要。话虽如此,插补数据总是比直接丢弃变量好一些。

df

df

In python

del mydata.column_name

mydata.drop('column_name', axis=1, inplace=True)

Time-Series Specific Methods

时间序列分析专属方法

前推法(LOCF,Last Observation Carried Forward,将每个缺失值替换为缺失之前的最后一次观测值)与后推法(NOCB,Next Observation Carried Backward,与LOCF方向相反——使用缺失值后面的观测值进行填补)

这是分析可能缺少后续观测值的纵向重复测量数据的常用方法。纵向数据在不同时间点跟踪同一样本。当数据具有明显的趋势时,这两种方法都可能在分析中引入偏差,表现不佳。

线性插值。此方法适用于具有某些趋势但并非季节性数据的时间序列。

季节性调整+线性插值。此方法适用于具有趋势与季节性的数据。

image

季节性+插值法

image

线性插值法

image

LOCF插补法

image

均值插补法

注:以上数据来自imputeTS库的tsAirgap;插补数据被标红。

library(imputeTS)

na.random(mydata) # Random Imputation

na.locf(mydata, option = "locf") # Last Obs. Carried Forward

na.locf(mydata, option = "nocb") # Next Obs. Carried Backward

na.interpolation(mydata) # Linear Interpolation

na.seadec(mydata, algorithm = "interpolation") # Seasonal Adjustment then Linear Interpolation

均值,中位数与众数

计算整体均值、中位数或众数是一种非常基本的插补方法,它是唯一没有利用时间序列特征或变量关系的测试函数。该方法计算起来非常快速,但它也有明显的缺点。其中一个缺点就是,均值插补会减少数据的变化差异(方差)。

library(imputeTS)

na.mean(mydata, option = "mean") # Mean Imputation

na.mean(mydata, option = "median") # Median Imputation

na.mean(mydata, option = "mode") # Mode Imputation

In Python

from sklearn.preprocessing import Imputer

values = mydata.values

imputer = Imputer(missing_values=’NaN’, strategy=’mean’)

transformed_values = imputer.fit_transform(values)

strategy can be changed to "median" and “most_frequent”

线性回归

首先,使用相关系数矩阵能够选出一些缺失数据变量的预测变量。从中选择最靠谱的预测变量,并将其用于回归方程中的自变量。缺失数据的变量则被用于因变量。自变量数据完整的那些观测行被用于生成回归方程;其后,该方程则被用于预测缺失的数据点。在迭代过程中,我们插入缺失数据变量的值,再使用所有数据行来预测因变量。重复这些步骤,直到上一步与这一步的预测值几乎没有什么差别,也即收敛。

该方法“理论上”提供了缺失数据的良好估计。然而,它有几个缺点可能比优点还值得关注。首先,因为替换值是根据其他变量预测的,他们倾向于“过好”地组合在一起,因此标准差会被缩小。我们还必须假设回归用到的变量之间存在线性关系——而实际上他们之间可能并不存在这样的关系。

多重插补

1、插补:将不完整数据集缺失的观测行估算填充m次(图中m=3)。请注意,填充值是从某种分布中提取的。模拟随机抽取并不包含模型参数的不确定性。更好的方法是采用马尔科夫链蒙特卡洛模拟(MCMC,Markov Chain Monte Carlo Simulation)。这一步骤将生成m个完整的数据集。

2、分析:分别对(m个)每一个完整数据集进行分析。

3、合并:将m个分析结果整合为最终结果。

image



推荐阅读
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 每年,意甲、德甲、英超和西甲等各大足球联赛的赛程表都是球迷们关注的焦点。本文通过 Python 编程实现了一种生成赛程表的方法,该方法基于蛇形环算法。具体而言,将所有球队排列成两列的环形结构,左侧球队对阵右侧球队,首支队伍固定不动,其余队伍按顺时针方向循环移动,从而确保每场比赛不重复。此算法不仅高效,而且易于实现,为赛程安排提供了可靠的解决方案。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 机器学习中的标准化缩放、最小-最大缩放及鲁棒缩放技术解析 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 利用python爬取豆瓣电影Top250的相关信息,包括电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,导演,主演,年份,地区,类别这12项内容,然后将爬取的信息写入Exce ... [详细]
  • 解决问题:1、批量读取点云las数据2、点云数据读与写出3、csf滤波分类参考:https:github.comsuyunzzzCSF论文题目ÿ ... [详细]
  • 非线性门控感知器算法的实现与应用分析 ... [详细]
  • Python错误重试让多少开发者头疼?高效解决方案出炉
    ### 优化后的摘要在处理 Python 开发中的错误重试问题时,许多开发者常常感到困扰。为了应对这一挑战,`tenacity` 库提供了一种高效的解决方案。首先,通过 `pip install tenacity` 安装该库。使用时,可以通过简单的规则配置重试策略。例如,可以设置多个重试条件,使用 `|`(或)和 `&`(与)操作符组合不同的参数,从而实现灵活的错误重试机制。此外,`tenacity` 还支持自定义等待时间、重试次数和异常处理,为开发者提供了强大的工具来提高代码的健壮性和可靠性。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 使用Python代码高效生成大规模随机数据集(千万级) ... [详细]
  • 通过使用 `pandas` 库中的 `scatter_matrix` 函数,可以有效地绘制出多个特征之间的两两关系。该函数不仅能够生成散点图矩阵,还能通过参数如 `frame`、`alpha`、`c`、`figsize` 和 `ax` 等进行自定义设置,以满足不同的可视化需求。此外,`diagonal` 参数允许用户选择对角线上的图表类型,例如直方图或密度图,从而提供更多的数据洞察。 ... [详细]
  • 利用 Python Socket 实现 ICMP 协议下的网络通信
    在计算机网络课程的2.1实验中,学生需要通过Python Socket编程实现一种基于ICMP协议的网络通信功能。与操作系统自带的Ping命令类似,该实验要求学生开发一个简化的、非标准的ICMP通信程序,以加深对ICMP协议及其在网络通信中的应用的理解。通过这一实验,学生将掌握如何使用Python Socket库来构建和解析ICMP数据包,并实现基本的网络探测功能。 ... [详细]
  • 如何使用mysql_nd:Python连接MySQL数据库的优雅指南
    无论是进行机器学习、Web开发还是爬虫项目,数据库操作都是必不可少的一环。本文将详细介绍如何使用Python通过 `mysql_nd` 库与 MySQL 数据库进行高效连接和数据交互。内容涵盖以下几个方面: ... [详细]
author-avatar
晴晴qing951025
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有