热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

常见python中排序的代码详解

这篇文章主要为大家详细介绍了python算法的基础教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要为大家详细介绍了python算法的基础教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

前言:前两天腾讯笔试受到1万点暴击,感觉浪费我两天时间去牛客网做题……这篇博客介绍几种简单/常见的排序算法,算是整理下。

时间复杂度

(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

(2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

指数时间

指的是一个问题求解所需要的计算时间m(n),依输入数据的大小而呈指数成长(即输入数据的数量依线性成长,所花的时间将会以指数成长)


for (i=1; i<=n; i++)
 x++;
for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 x++;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

常数时间

若对于一个算法的上界与输入大小无关,则称其具有常数时间,记作时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

对数时间

若算法的T(n) =O(logn),则称其具有对数时间

常见的具有对数时间的算法有二叉树的相关操作和二分搜索。

对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。
递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

线性时间

如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。

一、冒泡算法

基本思想:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

冒泡排序的示例:

def bubble(array):
 for i in range(len(array)-1):
 for j in range(len(array)-1-i):
 if array[j] > array[j+1]: # 如果前一个大于后一个,则交换
 temp = array[j]
 array[j] = array[j+1]
 array[j+1] = temp


if __name__ == "__main__":
 array = [265, 494, 302, 160, 370, 219, 247, 287,
 354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
 print("------->排序前<-------")
 print(array)
 bubble(array)
 print("------->排序后<-------")
 print(array)

输出:

------->排序前<-------
[265, 494, 302, 160, 370, 219, 247, 287, 354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
------->排序后<-------
[82, 83, 160, 219, 247, 258, 265, 287, 291, 302, 304, 319, 345, 354, 370, 405, 423, 469, 494, 497]

讲解:

以随机产生的五个数为例: li=[354,405,469,82,345]
冒泡排序是怎么实现的?
首先先来个大循环,每次循环找出最大的数,放在列表的最后面。在上面的例子中,第一次找出最大数469,将469放在最后一个,此时我们知道
列表最后一个肯定是最大的,故还需要再比较前面4个数,找出4个数中最大的数405,放在列表倒数第二个......

5个数进行排序,需要多少次的大循环?? 当然是4次啦!同理,若有n个数,需n-1次大循环。

现在你会问我: 第一次找出最大数469,将469放在最后一个??怎么实现的??
嗯,(在大循环里)用一个小循环进行两数比较,首先354与405比较,若前者较大,需要交换数;反之不用交换。
当469与82比较时,需交换,故列表倒数第二个为469;469与345比较,需交换,此时最大数469位于列表最后一个啦!

难点来了,小循环需要多少次??

进行两数比较,从列表头比较至列表尾,此时需len(array)-1次!! 但是,嗯,举个例子吧: 当大循环i为3时,说明此时列表的最后3个数已经排好序了,不必进行两数比较,故小循环需len(array)-1-3. 即len(array)-1-i

冒泡排序复杂度:

时间复杂度: 最好情况O(n), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 稳定

简单选择排序的示例:

def select_sort(array):
 for i in range(len(array)-1): # 找出最小的数放与array[i]交换
 for j in range(i+1, len(array)):
 if array[i] > array[j]:
 temp = array[i]
 array[i] = array[j]
 array[j] = temp


if __name__ == "__main__":
 array = [265, 494, 302, 160, 370, 219, 247, 287,
 354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
 print(array)
 select_sort(array)
 print(array)

选择排序复杂度:

时间复杂度: 最好情况O(n^2), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 不稳定

举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。

排序效果:

import time


def insertion_sort(array):
 for i in range(1, len(array)): # 对第i个元素进行插入,i前面是已经排序好的元素
 position = i # 要插入数的下标
 current_val = array[position] # 把当前值存下来
 # 如果前一个数大于要插入数,则将前一个数往后移,比如5,8,12,7;要将7插入,先把7保存下来,比较12与7,将12往后移
 while position > 0 and current_val 

输出:

[92, 77, 67, 8, 6, 84, 55, 85, 43, 67]
time: 0.0
[6, 8, 43, 55, 67, 67, 77, 84, 85, 92]

如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

直接插入排序复杂度:

时间复杂度: 最好情况O(n), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 稳定

个人感觉直接插入排序算法难度是选择/冒泡算法是两倍……

四、快速排序

def quick_sort(array, left, right):
 &#39;&#39;&#39;
 :param array:
 :param left: 列表的第一个索引
 :param right: 列表最后一个元素的索引
 :return:
 &#39;&#39;&#39;
 if left >= right:
 return

 low = left
 high = right
 key = array[low] # 第一个值,即基准元素

 while low  key: # 找到列表右边比key大的值 为止
 high -= 1
 # 此时直接 把key跟 比它大的array[high]进行交换
 array[low] = array[high]
 array[high] = key

 while low 

输出:

-------排序前-------
[8, 4, 1, 14, 6, 2, 3, 9, 5, 13, 7, 1, 8, 10, 12]
-------排序后-------
[1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 12, 13, 14]

22行那里如果不加=号,当排序64,77,64是会死循环,此时key=64, 最后的64与开始的64交换,开始的64与本最后的64交换…… 无穷无尽

直接插入排序复杂度:

时间复杂度: 最好情况O(nlogn), 最坏情况O(n^2), 平均情况O(nlogn)

下面空间复杂度是看别人博客的,我也不大懂了……改天再研究下。

最优的情况下空间复杂度为:O(logn);每一次都平分数组的情况

最差的情况下空间复杂度为:O( n );退化为冒泡排序的情况

稳定性:不稳定

快速排序效果:

以上就是常见python中排序的代码详解的详细内容,更多请关注 第一PHP社区 其它相关文章!


推荐阅读
author-avatar
徐大总统_584
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有