热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

有效使用Django的QuerySets

有效使用Django的QuerySets
  对象关系映射 (ORM) 使得与SQL数据库交互更为简单,不过也被认为效率不高,比原始的SQL要慢。

  要有效的使用ORM,意味着需要多少要明白它是如何查询数据库的。本文我将重点介绍如何有效使用 Django ORM系统访问中到大型的数据集。

 Django的queryset是惰性的

  Django的queryset对应于数据库的若干记录(row),通过可选的查询来过滤。例如,下面的代码会得到数据库中名字为‘Dave’的所有的人:

person_set = Person.objects.filter(first_name="Dave")

  上面的代码并没有运行任何的数据库查询。你可以使用person_set,给它加上一些过滤条件,或者将它传给某个函数,这些操作都不会发送给数据库。这是对的,因为数据库查询是显著影响web应用性能的因素之一。

  要真正从数据库获得数据,你需要遍历queryset:

for person in person_set:
    print(person.last_name)

 Django的queryset是具有cache的

  当你遍历queryset时,所有匹配的记录会从数据库获取,然后转换成Django的model。这被称为执行(evaluation)。这些model会保存在queryset内置的cache中,这样如果你再次遍历这个queryset,你不需要重复运行通用的查询。

  例如,下面的代码只会执行一次数据库查询:

pet_set = Pet.objects.filter(species="Dog")
# The query is executed and cached.
for pet in pet_set:
    print(pet.first_name)
# The cache is used for subsequent iteration.
for pet in pet_set:
    print(pet.last_name)

 if语句会触发queryset的执行

  queryset的cache最有用的地方是可以有效的测试queryset是否包含数据,只有有数据时才会去遍历:

restaurant_set = Restaurant.objects.filter(cuisine="Indian")
# `if`语句会触发queryset的执行。
if restaurant_set:
    # 遍历时用的是cache中的数据
    for restaurant in restaurant_set:
        print(restaurant.name)

 如果不需要所有数据,queryset的cache可能会是个问题

  有时候,你也许只想知道是否有数据存在,而不需要遍历所有的数据。这种情况,简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些数据!

city_set = City.objects.filter(name="Cambridge")
# `if`语句会执行queryset.。
if city_set:
    # 我们并不需要所有的数据,但是ORM仍然会获取所有记录!
    print("At least one city called Cambridge still stands!")

  为了避免这个,可以用exists()方法来检查是否有数据:

tree_set = Tree.objects.filter(type="deciduous")
# `exists()`的检查可以避免数据放入queryset的cache。
if tree_set.exists():
    # 没有数据从数据库获取,从而节省了带宽和内存
    print("There are still hardwood trees in the world!")

 当queryset非常巨大时,cache会成为问题

  处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统进程,让你的程序濒临崩溃。

  要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法来获取数据,处理完数据就将其丢弃。

star_set = Star.objects.all()
# `iterator()`可以一次只从数据库获取少量数据,这样可以节省内存
for star in star_set.iterator():
    print(star.name)

  当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询

 如果查询集很大的话,if 语句是个问题

  如前所述,查询集缓存对于组合 if 语句和 for 语句是很强大的,它允许在一个查询集上进行有条件的循环。然而对于很大的查询集,则不适合使用查询集缓存。

  最简单的解决方案是结合使用exists()和iterator(), 通过使用两次数据库查询来避免使用查询集缓存。

molecule_set = Molecule.objects.all()
# One database query to test if any rows exist.
if molecule_set.exists():
    # Another database query to start fetching the rows in batches.
    for molecule in molecule_set.iterator():
        print(molecule.velocity)

  一个更复杂点的方案是使用 Python 的“ 高级迭代方法 ”在开始循环前先查看一下 iterator() 的第一个元素再决定是否进行循环。

atom_set = Atom.objects.all()
# One database query to start fetching the rows in batches.
atom_iterator = atom_set.iterator()
# Peek at the first item in the iterator.
try:
    first_atom = next(atom_iterator)
except StopIteration:
    # No rows were found, so do nothing.
    pass
else:
    # At least one row was found, so iterate over
    # all the rows, including the first one.
    from itertools import chain
    for atom in chain([first_atom], atom_set):
        print(atom.mass)

 防止不当的优化

  queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。

  使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能会造成额外的数据库查询。

  所以编码时需要注意一下,如果程序开始变慢,你需要看看代码的瓶颈在哪里,是否会有一些小的优化可以帮到你。

以上就是有效使用Django的QuerySets的详细内容,更多请关注 第一PHP社区 其它相关文章!


推荐阅读
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 本文详细探讨了 Django 的 ORM(对象关系映射)机制,重点介绍了其如何通过 Python 元类技术实现数据库表与 Python 类的映射。此外,文章还分析了 Django 中各种字段类型的继承结构及其与数据库数据类型的对应关系。 ... [详细]
  • 日志记录对于软件开发至关重要,特别是在调试和维护阶段。通过日志,开发者能够追踪错误源头并了解系统的运行状态。本文将探讨如何在Django框架中有效配置和使用日志记录功能。 ... [详细]
  • 本文详细介绍了Django框架内置的对象关系映射(ORM)机制,包括其工作原理、如何连接MySQL数据库以及ORM的主要优势和局限性。同时,提供了配置和使用Django ORM的具体步骤。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • Django Token 认证详解与 HTTP 401、403 状态码的区别
    本文详细介绍了如何在 Django 中配置和使用 Token 认证,并解释了 HTTP 401 和 HTTP 403 状态码的区别。通过具体的代码示例,帮助开发者理解认证机制及权限控制。 ... [详细]
  • 本文档汇总了Python编程的基础与高级面试题目,涵盖语言特性、数据结构、算法以及Web开发等多个方面,旨在帮助开发者全面掌握Python核心知识。 ... [详细]
  • cJinja:C++编写的轻量级HTML模板引擎
    本文介绍了cJinja,这是一个用C++编写的轻量级HTML模板解析库。它利用ejson来处理模板中的数据替换(即上下文),其语法与Django Jinja非常相似,功能强大且易于学习。 ... [详细]
  • 本文介绍了如何在Django项目中使用django-crontab库来设置和管理定时任务,包括安装、配置、编写定时任务以及常见问题的解决方案。通过具体实例,帮助开发者快速掌握在Django中实现自动化任务的方法。 ... [详细]
  • YB02 防水车载GPS追踪器
    YB02防水车载GPS追踪器由Yuebiz科技有限公司设计生产,适用于车辆防盗、车队管理和实时追踪等多种场合。 ... [详细]
  • Django xAdmin 使用指南(第一部分)
    本文介绍如何在Django项目中集成和使用xAdmin,这是一个增强版的管理界面,提供了比Django默认admin更多的功能。文中详细描述了集成步骤及配置方法。 ... [详细]
  • 本文介绍如何在Django项目中利用UpdateView更新数据后,根据主键(pk)自动重定向至对应的DetailView页面,实现流畅的用户交互体验。 ... [详细]
  • 本文详细介绍如何结合Django框架和DRF(Django REST Framework)来设计一套有效的全局异常处理系统。这套系统不仅能够妥善处理DRF引发的异常,还能兼容Django自带的admin界面异常处理逻辑。 ... [详细]
  • 本文探讨了在Windows 7 x64系统上使用easy_install工具时遇到的问题及解决方案,特别是当尝试安装Django活塞时出现的路径问题。 ... [详细]
  • 精选Unity开源项目:UniRx实现响应式编程
    本文介绍了Unity中的响应式编程框架——UniRx,探讨了其在解决异步编程难题中的应用及优势。 ... [详细]
author-avatar
平凡我86
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有