热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python笔试题(2017最新)Python面试题笔试题

引言想找一份Python开发工作吗?那你很可能得证明自己知道如何使用Python。下面这些问题涉及了与Python相关的许多技能,问题的关注点主要是

想找一份Python开发工作吗?那你很可能得证明自己知道如何使用Python。下面这些问题涉及了与Python相关的许多技能,问题的关注点主要是语言本身,不是某个特定的包或模块。每一个问题都可以扩充为一个教程,如果可能的话。某些问题甚至会涉及多个领域。

我之前还没有出过和这些题目一样难的面试题,如果你能轻松地回答出来的话,赶紧去找份工作吧!以下是2017年最新Python笔试题

问题1

到底什么是Python?你可以在回答中与其他技术进行对比(也鼓励这样做)。

答案

下面是一些关键点:

Python是一种解释型语言。这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译。其他解释型语言还包括PHP和Ruby。

Python是动态类型语言,指的是你在声明变量时,不需要说明变量的类型。你可以直接编写类似x=111和x="I'm a string"这样的代码,程序不会报错。

Python非常适合面向对象的编程(OOP),因为它支持通过组合(composition)与继承(inheritance)的方式定义类(class)。Python中没有访问说明符(access specifier,类似C++中的public和private),这么设计的依据是“大家都是成年人了”。

在Python语言中,函数是第一类对象(first-class objects)。这指的是它们可以被指定给变量,函数既能返回函数类型,也可以接受函数作为输入。类(class)也是第一类对象。

Python代码编写快,但是运行速度比编译语言通常要慢。好在Python允许加入基于C语言编写的扩展,因此我们能够优化代码,消除瓶颈,这点通常是可以实现的。numpy就是一个很好地例子,它的运行速度真的非常快,因为很多算术运算其实并不是通过Python实现的。

Python用途非常广泛——网络应用,自动化,科学建模,大数据应用,等等。它也常被用作“胶水语言”,帮助其他语言和组件改善运行状况。

Python让困难的事情变得容易,因此程序员可以专注于算法和数据结构的设计,而不用处理底层的细节。

问题2

补充缺失的代码

def print_directory_contents(sPath):
    """
    这个函数接受文件夹的名称作为输入参数,
    返回该文件夹中文件的路径,
    以及其包含文件夹中文件的路径。
    """
    # 补充代码

答案

def print_directory_contents(sPath):
    import os                                       
    for sChild in os.listdir(sPath):                
        sChildPath = os.path.join(sPath,sChild)
        if os.path.isdir(sChildPath):
            print_directory_contents(sChildPath)
        else:
            print sChildPath

特别要注意以下几点:

命名规范要统一。如果样本代码中能够看出命名规范,遵循其已有的规范。

递归函数需要递归并终止。确保你明白其中的原理,否则你将面临无休无止的调用栈(callstack)。

我们使用os模块与操作系统进行交互,同时做到交互方式是可以跨平台的。你可以把代码写成sChildPath = sPath + '/' + sChild,但是这个在Windows系统上会出错。

熟悉基础模块是非常有价值的,但是别想破脑袋都背下来,记住Google是你工作中的良师益友。

如果你不明白代码的预期功能,就大胆提问。

坚持KISS原则!保持简单,不过脑子就能懂!

为什么提这个问题:

说明面试者对与操作系统交互的基础知识

递归真是太好用啦

问题3

阅读下面的代码,写出A0,A1至An的最终值。

A0 = dict(zip(('a','b','c','d','e'),(1,2,3,4,5)))
A1 = range(10)
A2 = [i for i in A1 if i in A0]
A3 = [A0[s] for s in A0]
A4 = [i for i in A1 if i in A3]
A5 = {i:i*i for i in A1}
A6 = [[i,i*i] for i in A1]

答案

A0 = {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4}
A1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
A2 = []
A3 = [1, 3, 2, 5, 4]
A4 = [1, 2, 3, 4, 5]
A5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
A6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]

为什么提这个问题:

列表解析(list comprehension)十分节约时间,对很多人来说也是一个大的学习障碍。

如果你读懂了这些代码,就很可能可以写下正确地值。

其中部分代码故意写的怪怪的。因为你共事的人之中也会有怪人。

问题4

Python和多线程(multi-threading)。这是个好主意码?列举一些让Python代码以并行方式运行的方法。

答案

Python并不支持真正意义上的多线程。Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意。Python中有一个被称为Global Interpreter Lock(GIL)的东西,它会确保任何时候你的多个线程中,只有一个被执行。线程的执行速度非常之快,会让你误以为线程是并行执行的,但是实际上都是轮流执行。经过GIL这一道关卡处理,会增加执行的开销。这意味着,如果你想提高代码的运行速度,使用threading包并不是一个很好的方法。

不过还是有很多理由促使我们使用threading包的。如果你想同时执行一些任务,而且不考虑效率问题,那么使用这个包是完全没问题的,而且也很方便。但是大部分情况下,并不是这么一回事,你会希望把多线程的部分外包给操作系统完成(通过开启多个进程),或者是某些调用你的Python代码的外部程序(例如Spark或Hadoop),又或者是你的Python代码调用的其他代码(例如,你可以在Python中调用C函数,用于处理开销较大的多线程工作)。

为什么提这个问题

因为GIL就是个混账东西(A-hole)。很多人花费大量的时间,试图寻找自己多线程代码中的瓶颈,直到他们明白GIL的存在。

问题5

你如何管理不同版本的代码?

答案

版本管理!被问到这个问题的时候,你应该要表现得很兴奋,甚至告诉他们你是如何使用Git(或是其他你最喜欢的工具)追踪自己和奶奶的书信往来。我偏向于使用Git作为版本控制系统(VCS),但还有其他的选择,比如subversion(SVN)。

为什么提这个问题:

因为没有版本控制的代码,就像没有杯子的咖啡。有时候我们需要写一些一次性的、可以随手扔掉的脚本,这种情况下不作版本控制没关系。但是如果你面对的是大量的代码,使用版本控制系统是有利的。版本控制能够帮你追踪谁对代码库做了什么操作;发现新引入了什么bug;管理你的软件的不同版本和发行版;在团队成员中分享源代码;部署及其他自动化处理。它能让你回滚到出现问题之前的版本,单凭这点就特别棒了。还有其他的好功能。怎么一个棒字了得!

问题6

下面代码会输出什么:

def f(x,l=[]):
    for i in range(x):
        l.append(i*i)
    print l
f(2)
f(3,[3,2,1])
f(3)

答案:

[0, 1]
[3, 2, 1, 0, 1, 4]
[0, 1, 0, 1, 4]

呃?

第一个函数调用十分明显,for循环先后将0和1添加至了空列表l中。l是变量的名字,指向内存中存储的一个列表。第二个函数调用在一块新的内存中创建了新的列表。l这时指向了新生成的列表。之后再往新列表中添加0、1、2和4。很棒吧。第三个函数调用的结果就有些奇怪了。它使用了之前内存地址中存储的旧列表。这就是为什么它的前两个元素是0和1了。

不明白的话就试着运行下面的代码吧:

l_mem = []
l = l_mem           # the first call
for i in range(2):
    l.append(i*i)
print l             # [0, 1]
l = [3,2,1]         # the second call
for i in range(3):
    l.append(i*i)
print l             # [3, 2, 1, 0, 1, 4]
l = l_mem           # the third call
for i in range(3):
    l.append(i*i)
print l             # [0, 1, 0, 1, 4]

问题7

“猴子补丁”(monkey patching)指的是什么?这种做法好吗?

答案

“猴子补丁”就是指,在函数或对象已经定义之后,再去改变它们的行为。

举个例子:

import datetime
datetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)

大部分情况下,这是种很不好的做法 - 因为函数在代码库中的行为最好是都保持一致。打“猴子补丁”的原因可能是为了测试。mock包对实现这个目的很有帮助。

为什么提这个问题?

答对这个问题说明你对单元测试的方法有一定了解。你如果提到要避免“猴子补丁”,可以说明你不是那种喜欢花里胡哨代码的程序员(公司里就有这种人,跟他们共事真是糟糕透了),而是更注重可维护性。还记得KISS原则码?答对这个问题还说明你明白一些Python底层运作的方式,函数实际是如何存储、调用等等。

另外:如果你没读过mock模块的话,真的值得花时间读一读。这个模块非常有用。

问题8

这两个参数是什么意思:*args,**kwargs?我们为什么要使用它们?

答案

如果我们不确定要往函数中传入多少个参数,或者我们想往函数中以列表和元组的形式传参数时,那就使要用*args;如果我们不知道要往函数中传入多少个关键词参数,或者想传入字典的值作为关键词参数时,那就要使用**kwargs。args和kwargs这两个标识符是约定俗成的用法,你当然还可以用*bob和**billy,但是这样就并不太妥。

下面是具体的示例:

def f(*args,**kwargs): print args, kwargs
l = [1,2,3]
t = (4,5,6)
d = {'a':7,'b':8,'c':9}
f()
f(1,2,3)                    # (1, 2, 3) {}
f(1,2,3,"pythontab")           # (1, 2, 3, 'pythontab') {}
f(a=1,b=2,c=3)              # () {'a': 1, 'c': 3, 'b': 2}
f(a=1,b=2,c=3,zzz="hi")     # () {'a': 1, 'c': 3, 'b': 2, 'zzz': 'hi'}
f(1,2,3,a=1,b=2,c=3)        # (1, 2, 3) {'a': 1, 'c': 3, 'b': 2}
f(*l,**d)                   # (1, 2, 3) {'a': 7, 'c': 9, 'b': 8}
f(*t,**d)                   # (4, 5, 6) {'a': 7, 'c': 9, 'b': 8}
f(1,2,*t)                   # (1, 2, 4, 5, 6) {}
f(q="winning",**d)          # () {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
f(1,2,*t,q="winning",**d)   # (1, 2, 4, 5, 6) {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
def f2(arg1,arg2,*args,**kwargs): print arg1,arg2, args, kwargs
f2(1,2,3)                       # 1 2 (3,) {}
f2(1,2,3,"pythontab")              # 1 2 (3, 'pythontab') {}
f2(arg1=1,arg2=2,c=3)           # 1 2 () {'c': 3}
f2(arg1=1,arg2=2,c=3,zzz="hi")  # 1 2 () {'c': 3, 'zzz': 'hi'}
f2(1,2,3,a=1,b=2,c=3)           # 1 2 (3,) {'a': 1, 'c': 3, 'b': 2}
f2(*l,**d)                   # 1 2 (3,) {'a': 7, 'c': 9, 'b': 8}
f2(*t,**d)                   # 4 5 (6,) {'a': 7, 'c': 9, 'b': 8}
f2(1,2,*t)                   # 1 2 (4, 5, 6) {}
f2(1,1,q="winning",**d)      # 1 1 () {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}
f2(1,2,*t,q="winning",**d)   # 1 2 (4, 5, 6) {'a': 7, 'q': 'winning', 'c': 9, 'b': 8}

为什么提这个问题?

有时候,我们需要往函数中传入未知个数的参数或关键词参数。有时候,我们也希望把参数或关键词参数储存起来,以备以后使用。有时候,仅仅是为了节省时间。

问题9

下面这些是什么意思:@classmethod, @staticmethod, @property?

回答背景知识

这些都是装饰器(decorator)。装饰器是一种特殊的函数,要么接受函数作为输入参数,并返回一个函数,要么接受一个类作为输入参数,并返回一个类。@标记是语法糖(syntactic sugar),可以让你以简单易读得方式装饰目标对象。

@my_decorator
def my_func(stuff):
    do_things
Is equivalent to
def my_func(stuff):
    do_things
my_func = my_decorator(my_func)

你可以在本网站上找到介绍装饰器工作原理的教材。

真正的答案

@classmethod, @staticmethod和@property这三个装饰器的使用对象是在类中定义的函数。下面的例子展示了它们的用法和行为:

class MyClass(object):
    def init(self):
        self._some_property = "properties are nice"
        self._some_other_property = "VERY nice"
    def normal_method(*args,**kwargs):
        print "calling normal_method({0},{1})".format(args,kwargs)
    @classmethod
    def class_method(*args,**kwargs):
        print "calling class_method({0},{1})".format(args,kwargs)
    @staticmethod
    def static_method(*args,**kwargs):
        print "calling static_method({0},{1})".format(args,kwargs)
    @property
    def some_property(self,*args,**kwargs):
        print "calling some_property getter({0},{1},{2})".format(self,args,kwargs)
        return self._some_property
    @some_property.setter
    def some_property(self,*args,**kwargs):
        print "calling some_property setter({0},{1},{2})".format(self,args,kwargs)
        self._some_property = args[0]
    @property
    def some_other_property(self,*args,**kwargs):
        print "calling some_other_property getter({0},{1},{2})".format(self,args,kwargs)
        return self._some_other_property
o = MyClass()
# 未装饰的方法还是正常的行为方式,需要当前的类实例(self)作为第一个参数。
o.normal_method 
# >
o.normal_method() 
# normal_method((,),{})
o.normal_method(1,2,x=3,y=4) 
# normal_method((, 1, 2),{'y': 4, 'x': 3})
# 类方法的第一个参数永远是该类
o.class_method
# >
o.class_method()
# class_method((,),{})
o.class_method(1,2,x=3,y=4)
# class_method((, 1, 2),{'y': 4, 'x': 3})
# 静态方法(static method)中除了你调用时传入的参数以外,没有其他的参数。
o.static_method
# 
o.static_method()
# static_method((),{})
o.static_method(1,2,x=3,y=4)
# static_method((1, 2),{'y': 4, 'x': 3})
# @property是实现getter和setter方法的一种方式。直接调用它们是错误的。
# “只读”属性可以通过只定义getter方法,不定义setter方法实现。
o.some_property
# 调用some_property的getter(,(),{})
# 'properties are nice'
# “属性”是很好的功能
o.some_property()
# calling some_property getter(,(),{})
# Traceback (most recent call last):
#   File "", line 1, in 
# TypeError: 'str' object is not callable
o.some_other_property
# calling some_other_property getter(,(),{})
# 'VERY nice'
# o.some_other_property()
# calling some_other_property getter(,(),{})
# Traceback (most recent call last):
#   File "", line 1, in 
# TypeError: 'str' object is not callable
o.some_property = "pythontab"
# calling some_property setter(,('pythontab',),{})
o.some_property
# calling some_property getter(,(),{})
# 'pythontab'
o.some_other_property = "pythontab.com"
# Traceback (most recent call last):
#   File "", line 1, in 
# AttributeError: can't set attribute
o.some_other_property
# calling some_other_property getter(,(),{})

问题10

简要描述Python的垃圾回收机制(garbage collection)。

答案

这里能说的很多。你应该提到下面几个主要的点:

Python在内存中存储了每个对象的引用计数(reference count)。如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用作他用。

偶尔也会出现引用循环(reference cycle)。垃圾回收器会定时寻找这个循环,并将其回收。举个例子,假设有两个对象o1和o2,而且符合o1.x == o2和o2.x == o1这两个条件。如果o1和o2没有其他代码引用,那么它们就不应该继续存在。但它们的引用计数都是1。

Python中使用了某些启发式算法(heuristics)来加速垃圾回收。例如,越晚创建的对象更有可能被回收。对象被创建之后,垃圾回收器会分配它们所属的代(generation)。每个对象都会被分配一个代,而被分配更年轻代的对象是优先被处理的。

问题11

将下面的函数按照执行效率高低排序。它们都接受由0至1之间的数字构成的列表作为输入。这个列表可以很长。一个输入列表的示例如下:[random.random() for i in range(100000)]。你如何证明自己的答案是正确的。

def f1(lIn):
    l1 = sorted(lIn)
    l2 = [i for i in l1 if i<0.5]
    return [i*i for i in l2]
def f2(lIn):
    l1 = [i for i in lIn if i<0.5]
    l2 = sorted(l1)
    return [i*i for i in l2]
def f3(lIn):
    l1 = [i*i for i in lIn]
    l2 = sorted(l1)
    return [i for i in l1 if i<(0.5*0.5)]

答案

按执行效率从高到低排列:f2、f1和f3。要证明这个答案是对的,你应该知道如何分析自己代码的性能。Python中有一个很好的程序分析包,可以满足这个需求。

import cProfile
lIn = [random.random() for i in range(100000)]
cProfile.run(&#39;f1(lIn)&#39;)
cProfile.run(&#39;f2(lIn)&#39;)
cProfile.run(&#39;f3(lIn)&#39;)

为了向大家进行完整地说明,下面我们给出上述分析代码的输出结果:

>>> cProfile.run(&#39;f1(lIn)&#39;)
         4 function calls in 0.045 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.009    0.009    0.044    0.044 :1(f1)
        1    0.001    0.001    0.045    0.045 :1()
        1    0.000    0.000    0.000    0.000 {method &#39;disable&#39; of &#39;_lsprof.Profiler&#39; objects}
        1    0.035    0.035    0.035    0.035 {sorted}
>>> cProfile.run(&#39;f2(lIn)&#39;)
         4 function calls in 0.024 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.008    0.008    0.023    0.023 :1(f2)
        1    0.001    0.001    0.024    0.024 :1()
        1    0.000    0.000    0.000    0.000 {method &#39;disable&#39; of &#39;_lsprof.Profiler&#39; objects}
        1    0.016    0.016    0.016    0.016 {sorted}
>>> cProfile.run(&#39;f3(lIn)&#39;)
         4 function calls in 0.055 seconds
   Ordered by: standard name
   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.016    0.016    0.054    0.054 :1(f3)
        1    0.001    0.001    0.055    0.055 :1()
        1    0.000    0.000    0.000    0.000 {method &#39;disable&#39; of &#39;_lsprof.Profiler&#39; objects}
        1    0.038    0.038    0.038    0.038 {sorted}

为什么提这个问题?

定位并避免代码瓶颈是非常有价值的技能。想要编写许多高效的代码,最终都要回答常识上来——在上面的例子中,如果列表较小的话,很明显是先进行排序更快,因此如果你可以在排序前先进行筛选,那通常都是比较好的做法。其他不显而易见的问题仍然可以通过恰当的工具来定位。因此了解这些工具是有好处的。

以上就是Python笔试题(2017最新)Python面试题笔试题 的详细内容,更多请关注 第一PHP社区 其它相关文章!


推荐阅读
  • PHP服务器搭建的重要性及方法
    本文深入探讨了为什么在开发PHP应用之前需要搭建服务器环境,以及如何选择和搭建适合的PHP服务器。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 理解存储器的层次结构有助于程序员优化程序性能,通过合理安排数据在不同层级的存储位置,提升CPU的数据访问速度。本文详细探讨了静态随机访问存储器(SRAM)和动态随机访问存储器(DRAM)的工作原理及其应用场景,并介绍了存储器模块中的数据存取过程及局部性原理。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • 并发编程:深入理解设计原理与优化
    本文探讨了并发编程中的关键设计原则,特别是Java内存模型(JMM)的happens-before规则及其对多线程编程的影响。文章详细介绍了DCL双重检查锁定模式的问题及解决方案,并总结了不同处理器和内存模型之间的关系,旨在为程序员提供更深入的理解和最佳实践。 ... [详细]
  • TechStride 网站
    TechStride 成立于2014年初,致力于互联网前沿技术、产品创意及创业内容的聚合、搜索、学习与展示。我们旨在为互联网从业者提供更高效的新技术搜索、学习、分享和产品推广平台。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 如何在Windows 10的Bash中排除系统PATH
    探讨了在Windows 10的Bash环境中,如何通过调整注册表设置来避免调用Win32程序,确保使用的是Bash环境下的工具版本。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
author-avatar
手机用户2702936513
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有