热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

pltpython画直线_机器学习干货,一步一步通过Python实现梯度下降的学习

GradientDescent-梯度下降梯度下降法(英语:Gradientdescent)是一个一阶最优化算法,通常也称为最速下降法。要使用梯度下降法找
Gradient Descent - 梯度下降

梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法

以上是维基百科对梯度下降的解释。

下面我们来一步一步的学习一遍:

什么是 梯度下降?

为了方便,我们准备一些数据,并通过Python绘制出图像。

b9ddee3e379ce77203786896b7aab410.png

图1:数据准备和图像

如图1所示,我们准备了一组数据,x轴为体重(Weight)数据,y轴是身高(Height)数据,通过Python中 matplotlib 包,将数据图像话。

此时,图像中的点似乎呈现出线性的关系。

问题来了,我们怎么样去找到最匹配的直线关系式呢?

有的同学会直接上手 线性回归。自然没错,但是今天的主角是 梯度下降

那么,我们一起来用梯度下降的方式来解决这个问题吧!

第一步:假设函数关系 h(x)

既然上述图像可以被看成是线性关系,我们就可以假设一个线性的函数关系式:h(x);

Predicted Height = Intercept + Slope * Weight

身高的预测值 = y轴截距 + 斜率 * 体重

找到最优化线性关系的问题就转化成了:找到最优的 y轴截距 和 斜率的问题

用数学的方法来表示如下:

000730a03a22ed8114bd6728222c783e.png

图2:数学公式

在数据中,真实存在的 y值 和 预测值 h是存在误差的。这个误差可以用残留误差(Residual Error)来表示。

acc5c6e4ff7714cd7355d49d662d49c5.png

图3

ec77935a706ff12dcad1ffd5fc9b17ae.png

图4:残留误差(Residual Error)

在图4中,数据点(红球)的y值与直线给出的预测值之间的误差显示为蓝色的虚线

  • 在统计中,我们将所有误差的平方和称为Sum of the Squared Residuals 残值平方和;
  • 在机器学习中,所有误差的平方和称为 损失函数 Loss Function ~ J;

为什么损失函数里要用距离的平方而不是距离的绝对值?

大家有想过这个问题吗?误差是| 预测值_i - 实际值_i | ,那我取误差绝对值的和的最小值不也可以称为一个损失函数嘛。

千万不要以为这个平方是随随便便来的。背后是有道理的。

误差 = 预测值_i - 实际值_i

这个误差是符合一定概率分布的。看过我之前的文章介绍海量数据的中心极限定理的朋友,应该知道这个误差 可以被假定为:

平均值 u = 0,方差为σ 的正态分布。

0ad133a5a1dda4c901f85e24167f8281.png

图5:正态分布

那么在已知正太分布的情况下,每一个数据点都会对应一个误差,而误差出现的概率,准确的说是Likelihood是可以通过 正态分布的函数求得的。

e7892fa3353242ebbe372a3de814c9f0.png

图6:likelihood(概率)

d02450ca464ee3d5fcadf05f0db1df84.png

所有数据点 误差概率相加

当我们对上述函数取对数可得:

81fbbeb94e5bf1d028ceac8a41ff692d.png

取对数

最大似然分析,不懂得看我之前的文章。我们要保证 L 最大,只要保证上式 右边值最大。

式子右边 第一项和第二项是定值,只要保证第三项最小就可以使 L最大。

由于 u = 0,只要 sum((误差值_i)^2) 最小就可以啦!

这就是为什么 损失函数 J要采用平方的数学解释啦!

目标:找到β0 和 β1使得 损失函数 J 最小!!!
f6e66a173f53e718f5330e5d8cc68f13.png

图7:给出y和x的定义

在Python中,我们首先给β0 和 β1赋值为0,当然可以赋值成任何值。

4c205b3255b92fa420c267054da69d09.png

图8:梯度下降

为什么叫梯度下降?

在图8中,如果我们将每一个β0 和 β1 对应的的 残值平方和 作图表示出来,就能发现局部最低点,也就是残值平方和最小的点。图8是只考虑斜率的情况下。如果同时考虑β0 和 β1,则是三维图像,如图9.

a0d947de9a91b7a5b7b8b5dae0cf0e5f.png

图9

第二步:将β0 和 β1 插入相关函数和导数中;

介绍了这么多梯度下降,接着我们就进入如何使用梯度下降 找到β0 和 β1 吧!

小范围的极小值点,我们会想到 函数的一阶导数 = 0 对应的 x 值

be9c10abea529bb7aabed74073155e3a.png

图10:一阶导数

接下来,我们要定义一个重要的概念 学习效率(Learning Rate): a:梯度下降对于 Learning Rate的选择非常敏感。

b944f3ba8ef0f26d3200e97316476cc9.png

图11:梯度下降

当我们在当前的β0 和 β1 下无法使得 损失函数对于β0 和 β1 的偏微分为0。

损失函数对于β0 和 β1 的偏微分可以理解成β0 和 β1 变化的梯度方向(如图11)。那么,我们在这个梯度下降的方向上给β0 和 β1 做一个微小的移动。

5cc092769c881cf75a4ed7127d3d1d0a.png

图12

通过对β0 和 β1 最终找到是的损失函数 J 最小的β0 和 β1。

Python实现梯度下降
b8df28444140defd486d98e892a54512.png

图13

先从β0 和 β1 都为0开始,图13中蓝线。

1e44233d997c8ebaf9c685a0abd91ec2.png

我们运行1000次,并且将直线的演变过程画出来:

15449a2c053d88aafc36bf26b2d1c648.png

为了有些同学想自己试试,我把代码复制如下:

import numpy as npfrom matplotlib import pyplot as plt%matplotlib inlinex_data = [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]y_data = [1, 2, 3, 1, 4, 5, 6, 4, 7, 10, 15, 9]plt.plot(x_data, y_data, 'ro')plt.title('Height vs Weight')plt.xlabel('Weight')plt.ylabel('Height')# y = β0 + β1 * xβ0 = 0β1 = 0y = lambda x : β0 + β1 * xdef plot_line(y, data_points): x_values = [i for i in range(int(min(data_points)) - 1, int(max(data_points)) + 2)] y_values = [y(x) for x in x_values] plt.plot(x_values, y_values, 'b') plot_line(y, x_data)learning_rate = 0.001def summation(y, x_data, y_data): slope_β0 = 0 slope_β1 = 0 for i in range(1, len(x_data)): slope_β0 += y(x_data[i]) - y_data[i] slope_β1 += (y(x_data[i]) - y_data[i]) * x_data[i] return slope_β0 / len(x_data), slope_β1 / len(x_data)for i in range(1000): slope_β0, slope_β1 = summation(y, x_data, y_data) β0 = β0 - learning_rate * slope_β0 β1 = β1 - learning_rate * slope_β1 plot_line(y, x_data) plt.plot(x_data, y_data, 'ro')总结

以上就是梯度下降的过程,以及如何通过python来实现梯度下降。

最后,我们可以得到我们想要的线性关系函数了。

87c8653a27d58777f3bb6873a393aa50.png

y = 0.058 + 1 * x

希望大家喜欢我的文章。

“逃学博士”:理工科直男一枚,在冰天雪地的加拿大攻读工程博士。闲暇之余分享点科学知识和学习干货。




推荐阅读
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 机器学习(ML)三之多层感知机
    深度学习主要关注多层模型,现在以多层感知机(multilayerperceptron,MLP)为例,介绍多层神经网络的概念。隐藏层多层感知机在单层神经网络的基础上引入了一到多个隐藏 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 本文介绍了多维缩放(MDS)技术,这是一种将高维数据映射到低维空间的方法,通过保持原始数据间的关系,以便于可视化和分析。文章详细描述了MDS的原理和实现过程,并提供了Python代码示例。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • Bootstrap Paginator 分页插件详解与应用
    本文深入探讨了Bootstrap Paginator这款流行的JavaScript分页插件,提供了详细的使用指南和示例代码,旨在帮助开发者更好地理解和利用该工具进行高效的数据展示。 ... [详细]
  • 管理UINavigationController中的手势返回 - Managing Swipe Back Gestures in UINavigationController
    本文介绍了如何在一个简单的闪存卡片应用中实现平滑的手势返回功能,以增强用户体验。 ... [详细]
  • Spring Boot使用AJAX从数据库读取数据异步刷新前端表格
      近期项目需要是实现一个通过筛选选取所需数据刷新表格的功能,因为表格只占页面的一小部分,不希望整个也页面都随之刷新,所以首先想到了使用AJAX来实现。  以下介绍解决方法(请忽视 ... [详细]
  • MySQL InnoDB 存储引擎索引机制详解
    本文深入探讨了MySQL InnoDB存储引擎中的索引技术,包括索引的基本概念、数据结构与算法、B+树的特性及其在数据库中的应用,以及索引优化策略。 ... [详细]
  • 高级缩放示例.就像谷歌地图一样.它仅缩放图块,但不缩放整个图像.因此,缩放的瓷砖占据了恒定的记忆,并且不会为大型缩放图像调整大小的图像.对于简化的缩放示例lookhere.在Win ... [详细]
  • 深入解析层次聚类算法
    本文详细介绍了层次聚类算法的基本原理,包括其通过构建层次结构来分类样本的特点,以及自底向上(凝聚)和自顶向下(分裂)两种主要的聚类策略。文章还探讨了不同距离度量方法对聚类效果的影响,并提供了具体的参数设置指导。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • c语言二元插值,二维线性插值c语言
    c语言二元插值,二维线性插值c语言 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
author-avatar
Cy章健Mr_189
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有