热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

pltpython画直线_机器学习干货,一步一步通过Python实现梯度下降的学习

GradientDescent-梯度下降梯度下降法(英语:Gradientdescent)是一个一阶最优化算法,通常也称为最速下降法。要使用梯度下降法找
Gradient Descent - 梯度下降

梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法

以上是维基百科对梯度下降的解释。

下面我们来一步一步的学习一遍:

什么是 梯度下降?

为了方便,我们准备一些数据,并通过Python绘制出图像。

b9ddee3e379ce77203786896b7aab410.png

图1:数据准备和图像

如图1所示,我们准备了一组数据,x轴为体重(Weight)数据,y轴是身高(Height)数据,通过Python中 matplotlib 包,将数据图像话。

此时,图像中的点似乎呈现出线性的关系。

问题来了,我们怎么样去找到最匹配的直线关系式呢?

有的同学会直接上手 线性回归。自然没错,但是今天的主角是 梯度下降

那么,我们一起来用梯度下降的方式来解决这个问题吧!

第一步:假设函数关系 h(x)

既然上述图像可以被看成是线性关系,我们就可以假设一个线性的函数关系式:h(x);

Predicted Height = Intercept + Slope * Weight

身高的预测值 = y轴截距 + 斜率 * 体重

找到最优化线性关系的问题就转化成了:找到最优的 y轴截距 和 斜率的问题

用数学的方法来表示如下:

000730a03a22ed8114bd6728222c783e.png

图2:数学公式

在数据中,真实存在的 y值 和 预测值 h是存在误差的。这个误差可以用残留误差(Residual Error)来表示。

acc5c6e4ff7714cd7355d49d662d49c5.png

图3

ec77935a706ff12dcad1ffd5fc9b17ae.png

图4:残留误差(Residual Error)

在图4中,数据点(红球)的y值与直线给出的预测值之间的误差显示为蓝色的虚线

  • 在统计中,我们将所有误差的平方和称为Sum of the Squared Residuals 残值平方和;
  • 在机器学习中,所有误差的平方和称为 损失函数 Loss Function ~ J;

为什么损失函数里要用距离的平方而不是距离的绝对值?

大家有想过这个问题吗?误差是| 预测值_i - 实际值_i | ,那我取误差绝对值的和的最小值不也可以称为一个损失函数嘛。

千万不要以为这个平方是随随便便来的。背后是有道理的。

误差 = 预测值_i - 实际值_i

这个误差是符合一定概率分布的。看过我之前的文章介绍海量数据的中心极限定理的朋友,应该知道这个误差 可以被假定为:

平均值 u = 0,方差为σ 的正态分布。

0ad133a5a1dda4c901f85e24167f8281.png

图5:正态分布

那么在已知正太分布的情况下,每一个数据点都会对应一个误差,而误差出现的概率,准确的说是Likelihood是可以通过 正态分布的函数求得的。

e7892fa3353242ebbe372a3de814c9f0.png

图6:likelihood(概率)

d02450ca464ee3d5fcadf05f0db1df84.png

所有数据点 误差概率相加

当我们对上述函数取对数可得:

81fbbeb94e5bf1d028ceac8a41ff692d.png

取对数

最大似然分析,不懂得看我之前的文章。我们要保证 L 最大,只要保证上式 右边值最大。

式子右边 第一项和第二项是定值,只要保证第三项最小就可以使 L最大。

由于 u = 0,只要 sum((误差值_i)^2) 最小就可以啦!

这就是为什么 损失函数 J要采用平方的数学解释啦!

目标:找到β0 和 β1使得 损失函数 J 最小!!!
f6e66a173f53e718f5330e5d8cc68f13.png

图7:给出y和x的定义

在Python中,我们首先给β0 和 β1赋值为0,当然可以赋值成任何值。

4c205b3255b92fa420c267054da69d09.png

图8:梯度下降

为什么叫梯度下降?

在图8中,如果我们将每一个β0 和 β1 对应的的 残值平方和 作图表示出来,就能发现局部最低点,也就是残值平方和最小的点。图8是只考虑斜率的情况下。如果同时考虑β0 和 β1,则是三维图像,如图9.

a0d947de9a91b7a5b7b8b5dae0cf0e5f.png

图9

第二步:将β0 和 β1 插入相关函数和导数中;

介绍了这么多梯度下降,接着我们就进入如何使用梯度下降 找到β0 和 β1 吧!

小范围的极小值点,我们会想到 函数的一阶导数 = 0 对应的 x 值

be9c10abea529bb7aabed74073155e3a.png

图10:一阶导数

接下来,我们要定义一个重要的概念 学习效率(Learning Rate): a:梯度下降对于 Learning Rate的选择非常敏感。

b944f3ba8ef0f26d3200e97316476cc9.png

图11:梯度下降

当我们在当前的β0 和 β1 下无法使得 损失函数对于β0 和 β1 的偏微分为0。

损失函数对于β0 和 β1 的偏微分可以理解成β0 和 β1 变化的梯度方向(如图11)。那么,我们在这个梯度下降的方向上给β0 和 β1 做一个微小的移动。

5cc092769c881cf75a4ed7127d3d1d0a.png

图12

通过对β0 和 β1 最终找到是的损失函数 J 最小的β0 和 β1。

Python实现梯度下降
b8df28444140defd486d98e892a54512.png

图13

先从β0 和 β1 都为0开始,图13中蓝线。

1e44233d997c8ebaf9c685a0abd91ec2.png

我们运行1000次,并且将直线的演变过程画出来:

15449a2c053d88aafc36bf26b2d1c648.png

为了有些同学想自己试试,我把代码复制如下:

import numpy as npfrom matplotlib import pyplot as plt%matplotlib inlinex_data = [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]y_data = [1, 2, 3, 1, 4, 5, 6, 4, 7, 10, 15, 9]plt.plot(x_data, y_data, 'ro')plt.title('Height vs Weight')plt.xlabel('Weight')plt.ylabel('Height')# y = β0 + β1 * xβ0 = 0β1 = 0y = lambda x : β0 + β1 * xdef plot_line(y, data_points): x_values = [i for i in range(int(min(data_points)) - 1, int(max(data_points)) + 2)] y_values = [y(x) for x in x_values] plt.plot(x_values, y_values, 'b') plot_line(y, x_data)learning_rate = 0.001def summation(y, x_data, y_data): slope_β0 = 0 slope_β1 = 0 for i in range(1, len(x_data)): slope_β0 += y(x_data[i]) - y_data[i] slope_β1 += (y(x_data[i]) - y_data[i]) * x_data[i] return slope_β0 / len(x_data), slope_β1 / len(x_data)for i in range(1000): slope_β0, slope_β1 = summation(y, x_data, y_data) β0 = β0 - learning_rate * slope_β0 β1 = β1 - learning_rate * slope_β1 plot_line(y, x_data) plt.plot(x_data, y_data, 'ro')总结

以上就是梯度下降的过程,以及如何通过python来实现梯度下降。

最后,我们可以得到我们想要的线性关系函数了。

87c8653a27d58777f3bb6873a393aa50.png

y = 0.058 + 1 * x

希望大家喜欢我的文章。

“逃学博士”:理工科直男一枚,在冰天雪地的加拿大攻读工程博士。闲暇之余分享点科学知识和学习干货。




推荐阅读
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 本文深入探讨了 Python 中的循环结构(包括 for 循环和 while 循环)、函数定义与调用,以及面向对象编程的基础概念。通过详细解释和代码示例,帮助读者更好地理解和应用这些核心编程元素。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文介绍了如何在C#中启动一个应用程序,并通过枚举窗口来获取其主窗口句柄。当使用Process类启动程序时,我们通常只能获得进程的句柄,而主窗口句柄可能为0。因此,我们需要使用API函数和回调机制来准确获取主窗口句柄。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
author-avatar
Cy章健Mr_189
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有