热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python实现LRU算法的2种方法

这篇文章主要介绍了Python实现LRU算法的2种方法,本文分别给出了用OrderedDict实现、用dict+list实现两种方法,需要的朋友可以参考下
LRU:least recently used,最近最少使用算法。它的使用场景是:在有限的空间中存储对象时,当空间满时,会按一定的原则删除原有的对象,常用的原则(算法)有LRU,FIFO,LFU等。在计算机的Cache硬件,以及主存到虚拟内存的页面置换,还有Redis缓存系统中都用到了该算法。我在一次面试和一个笔试时,也遇到过这个问题。

LRU的算法是比较简单的,当对key进行访问时(一般有查询,更新,增加,在get()和set()两个方法中实现即可)时,将该key放到队列的最前端(或最后端)就行了,这样就实现了对key按其最后一次访问的时间降序(或升序)排列,当向空间中增加新对象时,如果空间满了,删除队尾(或队首)的对象。

在Python中,可以使用collections.OrderedDict很方便的实现LRU算法,当然,如果你想不到用OrderedDict,那可以用dict+list来实现。本文主要参考了LRU CACHE IN PYTHON,写的非常好,既实现了功能,又简洁易读。方法一的代码与参考文章基本相同,方法二是我自己想出来的,比较繁琐一些,其实OrderedDict本身也是类似的这种机制来实现的有序。

不过,下面的实现是有问题的,这个cache的key:value键值对中,value只能是不可变类型。因为,如果value是可变类型,那对于同一个key,所有调用get(key)方法返回的value都是指向同一个可变对象的,当修改其中一个value时,那所有的value都会被修改了,即使你没有调用set()方法也会这样。这是我们不希望看到的。解决方法我想到了两种,一是可变对象序列化后再存储,即将可变对象转为不可变对象;二是仍存储可变对象,但get()时,返回一个深拷贝,这样每个get()调用返回的对象就不会相互影响了。推荐第一种方法。另外,对于key,推荐使用str/unicode类型。

当并发时,还会存在一个问题,因为这涉及到对公共资源的写操作,所以必须要对set()加锁。其实,在并发情况下,所有对公共资源的写操作都要加锁。如果不存在并发的情况,只有单线程,那可以不加锁。

方法一:用OrderedDict实现(推荐)

代码如下:


from collections import OrderedDict


class LRUCache(OrderedDict):
'''不能存储可变类型对象,不能并发访问set()'''

def __init__(self,capacity):
self.capacity = capacity
self.cache = OrderedDict()

def get(self,key):
if self.cache.has_key(key):
value = self.cache.pop(key)
self.cache[key] = value
else:
value = None

return value

def set(self,key,value):
if self.cache.has_key(key):
value = self.cache.pop(key)
self.cache[key] = value
else:
if len(self.cache) == self.capacity:
self.cache.popitem(last = False) #pop出第一个item
self.cache[key] = value
else:
self.cache[key] = value


测试代码如下

代码如下:


c = LRUCache(5)

for i in range(5,10):
c.set(i,10*i)


print c.cache, c.cache.keys()

c.get(5)
c.get(7)

print c.cache, c.cache.keys()

c.set(10,100)
print c.cache, c.cache.keys()

c.set(9,44)
print c.cache, c.cache.keys()

输出如下

代码如下:


OrderedDict([(5, 50), (6, 60), (7, 70), (8, 80), (9, 90)]) [5, 6, 7, 8, 9]
OrderedDict([(6, 60), (8, 80), (9, 90), (5, 50), (7, 70)]) [6, 8, 9, 5, 7]
OrderedDict([(8, 80), (9, 90), (5, 50), (7, 70), (10, 100)]) [8, 9, 5, 7, 10]
OrderedDict([(8, 80), (5, 50), (7, 70), (10, 100), (9, 90)]) [8, 5, 7, 10, 9]


方法二:用dict+list实现(不推荐)

代码如下:


class LRUCache(object):
'''不能存储可变类型对象,不能并发访问set()'''

def __init__(self,capacity):
self.l = []
self.d = {}
self.capacity = capacity

def get(self,key):
if self.d.has_key(key):
value = self.d[key]
self.l.remove(key)
self.l.insert(0,key)
else:
value = None

return value

def set(self,key,value):
if self.d.has_key(key):
self.l.remove(key)
elif len(self.d) == self.capacity:
oldest_key = self.l.pop()
self.d.pop(oldest_key)

self.d[key] = value
self.l.insert(0, key)


测试代码如下

代码如下:


c = LRUCache(5)

for i in range(5,10):
c.set(i,10*i)


print c.d,c.l

c.get(5)
c.get(7)

print c.d,c.l

c.set(10,100)
print c.d,c.l

c.set(9,44)
print c.d,c.l

输出为

代码如下:


{8: 80, 9: 90, 5: 50, 6: 60, 7: 70} [9, 8, 7, 6, 5]
{8: 80, 9: 90, 5: 50, 6: 60, 7: 70} [7, 5, 9, 8, 6]
{5: 50, 7: 70, 8: 80, 9: 90, 10: 100} [10, 7, 5, 9, 8]
{5: 50, 7: 70, 8: 80, 9: 44, 10: 100} [9, 10, 7, 5, 8]

推荐阅读
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • 本文深入探讨了 Python 列表切片的基本概念和实际应用,通过具体示例展示了不同切片方式的使用方法及其背后的逻辑。 ... [详细]
  • 本文详细介绍了Python编程语言的学习路径,涵盖基础语法、常用组件、开发工具、数据库管理、Web服务开发、大数据分析、人工智能、爬虫开发及办公自动化等多个方向。通过系统化的学习计划,帮助初学者快速掌握Python的核心技能。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 本文介绍了数据库体系的基础知识,涵盖关系型数据库(如MySQL)和非关系型数据库(如MongoDB)的基本操作及高级功能。通过三个阶段的学习路径——基础、优化和部署,帮助读者全面掌握数据库的使用和管理。 ... [详细]
  • 优化Flask应用的并发处理:解决Mysql连接过多问题
    本文探讨了在Flask应用中通过优化后端架构来应对高并发请求,特别是针对Mysql 'too many connections' 错误的解决方案。我们将介绍如何利用Redis缓存、Gunicorn多进程和Celery异步任务队列来提升系统的性能和稳定性。 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 在项目中使用 Redis 时,了解其不同架构模式(如单节点、主从复制、哨兵模式和集群)对于确保系统的高可用性和扩展性至关重要。本文将详细探讨这些模式的特点和应用场景。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • QBlog开源博客系统:Page_Load生命周期与参数传递优化(第四部分)
    本教程将深入探讨QBlog开源博客系统的Page_Load生命周期,并介绍一种简洁的参数传递重构方法。通过视频演示和详细讲解,帮助开发者更好地理解和应用这些技术。 ... [详细]
author-avatar
玫瑰编辑1轶事
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有