热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python使用gensim计算文档相似性

在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性。那么python里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大。下面我们就来体验下gensim的强大
pre_file.py

#-*-coding:utf-8-*-
import MySQLdb
import MySQLdb as mdb
import os,sys,string
import jieba
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
#连接数据库
try:
  cOnn=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
except Exception,e:
  print e
  sys.exit()
#获取cursor对象操作数据库
cursor=conn.cursor(mdb.cursors.DictCursor) #cursor游标
#获取内容
sql='SELECT link,content FROM test1.spider;'
cursor.execute(sql)   #execute()方法,将字符串当命令执行
data=cursor.fetchall()#fetchall()接收全部返回结果行
f=codecs.open('C:\Users\kk\Desktop\hello-result1.txt','w','utf-8')
 
for row in data:    #row接收结果行的每行数据
  seg='/'.join(list(jieba.cut(row['content'],cut_all='False')))
  f.write(row['link']+' '+seg+'\r\n')
f.close()
 
cursor.close()
      #提交事务,在插入数据时必须

jiansuo.py

#-*-coding:utf-8-*-
import sys
import string
import MySQLdb
import MySQLdb as mdb
import gensim
from gensim import corpora,models,similarities
from gensim.similarities import MatrixSimilarity
import logging
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
 
con=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
with con:
  cur=con.cursor()
  cur.execute('SELECT * FROM cutresult_copy')
  rows=cur.fetchall()
  class MyCorpus(object):
    def __iter__(self):
      for row in rows:
        yield str(row[1]).split('/')
#开启日志
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s',level=logging.INFO)
Corp=MyCorpus()
#将网页文档转化为tf-idf
dictiOnary=corpora.Dictionary(Corp)
corpus=[dictionary.doc2bow(text) for text in Corp] #将文档转化为词袋模型
#print corpus
tfidf=models.TfidfModel(corpus)#使用tf-idf模型得出文档的tf-idf模型
corpus_tfidf=tfidf[corpus]#计算得出tf-idf值
#for doc in corpus_tfidf:
  #print doc
###
'''
q_file=open('C:\Users\kk\Desktop\q.txt','r')
query=q_file.readline()
q_file.close()
vec_bow=dictionary.doc2bow(query.split(' '))#将请求转化为词带模型
vec_tfidf=tfidf[vec_bow]#计算出请求的tf-idf值
#for t in vec_tfidf:
 # print t
'''
###
query=raw_input('Enter your query:')
vec_bow=dictionary.doc2bow(query.split())
vec_tfidf=tfidf[vec_bow]
index=similarities.MatrixSimilarity(corpus_tfidf)
sims=index[vec_tfidf]
similarity=list(sims)
print sorted(similarity,reverse=True)

encodings.xml

<&#63;xml version="1.0" encoding="UTF-8"&#63;>

 
  
 


misc.xml

<&#63;xml version="1.0" encoding="UTF-8"&#63;>

 
  
  
  
  
  
  
  
  
 
 


modules.xml

<&#63;xml version="1.0" encoding="UTF-8"&#63;>

 
  
   
  
 


推荐阅读
  • 简化报表生成:EasyReport工具的全面解析
    本文详细介绍了EasyReport,一个易于使用的开源Web报表工具。该工具支持Hadoop、HBase及多种关系型数据库,能够将SQL查询结果转换为HTML表格,并提供Excel导出、图表显示和表头冻结等功能。 ... [详细]
  • 优化Flask应用的并发处理:解决Mysql连接过多问题
    本文探讨了在Flask应用中通过优化后端架构来应对高并发请求,特别是针对Mysql 'too many connections' 错误的解决方案。我们将介绍如何利用Redis缓存、Gunicorn多进程和Celery异步任务队列来提升系统的性能和稳定性。 ... [详细]
  • JavaScript 中创建对象的多种方法
    本文详细介绍了 JavaScript 中创建对象的几种常见方式,包括对象字面量、构造函数和 Object.create 方法,并提供了示例代码和属性描述符的解释。 ... [详细]
  • 1.介绍有时候我们需要一些模拟数据来进行测试,今天简单记录下如何用存储过程生成一些随机数据。2.建表我们新建一张学生表和教师表如下:CREATETABLEstudent(idINT ... [详细]
  • Python Django大学生心理健康管理系统开发(含源码、文档)
    本项目包含完整的源代码、设计文档、数据库结构以及详细的安装指南,旨在为计算机专业的学生提供一个全面的心理健康管理系统解决方案。 ... [详细]
  • 本文详细介绍了MySQL数据库中的Bin Log和Redo Log,阐述了它们在日志记录机制、应用场景以及数据恢复方面的区别。通过对比分析,帮助读者更好地理解这两种日志文件的作用和特性。 ... [详细]
  • ssm框架整合及工程分层1.先创建一个新的project1.1配置pom.xml ... [详细]
  • 使用JS、HTML5和C3创建自定义弹出窗口
    本文介绍如何结合JavaScript、HTML5和C3.js来实现一个功能丰富的自定义弹出窗口。通过具体的代码示例,详细讲解了实现过程中的关键步骤和技术要点。 ... [详细]
  • MongoDB的核心特性与架构解析
    本文深入探讨了MongoDB的核心特性,包括其强大的查询语言、灵活的文档模型以及高效的索引机制。此外,还详细介绍了MongoDB的体系结构,解释了其文档、集合和数据库的层次关系,并对比了MongoDB与传统关系型数据库(如MySQL)的逻辑结构。 ... [详细]
  • 本文介绍了一个基于 Java SpringMVC 和 SSM 框架的综合系统,涵盖了操作日志记录、文件管理、头像编辑、权限控制、以及多种技术集成如 Shiro、Redis 等,旨在提供一个高效且功能丰富的开发平台。 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 配置PHPStudy环境并使用DVWA进行Web安全测试
    本文详细介绍了如何在PHPStudy环境下配置DVWA( Damn Vulnerable Web Application ),并利用该平台进行SQL注入和XSS攻击的练习。通过此过程,读者可以熟悉常见的Web漏洞及其利用方法。 ... [详细]
  • 本文详细介绍了Java中实现异步调用的多种方式,包括线程创建、Future接口、CompletableFuture类以及Spring框架的@Async注解。通过代码示例和深入解析,帮助读者理解并掌握这些技术。 ... [详细]
  • 本文详细介绍如何使用 Python 集成微信支付的三种主要方式:Native 支付、APP 支付和 JSAPI 支付。每种方式适用于不同的应用场景,如 PC 网站、移动端应用和公众号内支付等。 ... [详细]
  • Python实现斐波那契数列的方法与优化
    本文详细介绍了如何在Python中编写斐波那契数列,并探讨了不同的实现方法及其性能优化。通过递归、迭代和公式法,读者可以了解每种方法的优缺点,并选择最适合自己的实现方式。 ... [详细]
author-avatar
夫妇郭_390
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有