热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python中正则表达式的详细教程

这篇文章主要介绍了Python中正则表达式的详细教程,正则表达式是Python学习进阶当中的重要内容,需要的朋友可以参考下
1.了解正则表达式

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。

正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。

正则表达式的大致匹配过程是:
1.依次拿出表达式和文本中的字符比较,
2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。
3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

2.正则表达式的语法规则

下面是Python中正则表达式的一些匹配规则,图片资料来自CSDN

2015430160820157.png (799×1719)

3.正则表达式相关注解
(1)数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字 符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量 词”ab*?”,将找到”a”。

注:我们一般使用非贪婪模式来提取。
(2)反斜杠问题

与大多数编程语言相 同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反 斜杠”\\\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\\”表示。同样,匹配一个数字的”\\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。
4.Python Re模块

Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下

#返回pattern对象
re.compile(string[,flag]) 
#以下为匹配所用函数
re.match(pattern, string[, flags])
re.search(pattern, string[, flags])
re.split(pattern, string[, maxsplit])
re.findall(pattern, string[, flags])
re.finditer(pattern, string[, flags])
re.sub(pattern, repl, string[, count])
re.subn(pattern, repl, string[, count])

在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如

pattern = re.compile(r'hello')

在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。

另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:

参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。

可选值有:

  • ? re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
  • ? re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
  • ? re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为
  • ? re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
  • ? re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
  • ? re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

在刚才所说的另外几个方法例如 re.match 里我们就需要用到这个pattern了,下面我们一一介绍。

注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。

(1)re.match(pattern, string[, flags])

这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回 None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对 string向后匹配。下面我们通过一个例子理解一下

__author__ = 'CQC'
# -*- coding: utf-8 -*-
 
#导入re模块
import re
 
# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(r'hello')
 
# 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None
result1 = re.match(pattern,'hello')
result2 = re.match(pattern,'helloo CQC!')
result3 = re.match(pattern,'helo CQC!')
result4 = re.match(pattern,'hello CQC!')
 
#如果1匹配成功
if result1:
  # 使用Match获得分组信息
  print result1.group()
else:
  print '1匹配失败!'
 
#如果2匹配成功
if result2:
  # 使用Match获得分组信息
  print result2.group()
else:
  print '2匹配失败!'
 
#如果3匹配成功
if result3:
  # 使用Match获得分组信息
  print result3.group()
else:
  print '3匹配失败!'
 
#如果4匹配成功
if result4:
  # 使用Match获得分组信息
  print result4.group()
else:
  print '4匹配失败!'

运行结果

hello
hello
3匹配失败!
hello

匹配分析

1.第一个匹配,pattern正则表达式为'hello',我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。

2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。

3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o' 时无法完成匹配,匹配终止,返回None

4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。

我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:
1.string: 匹配时使用的文本。
2.re: 匹配时使用的Pattern对象。
3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:
1.group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
2.groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
3.groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
4.start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
5.end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
6.span([group]):
返回(start(group), end(group))。
7.expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g0。

下面我们用一个例子来体会一下

# -*- coding: utf-8 -*-
#一个简单的match实例
 
import re
# 匹配如下内容:单词+空格+单词+任意字符
m = re.match(r'(\w+) (\w+)(?P.*)', 'hello world!')
 
print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group():", m.group()
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r'\g \g\g'):", m.expand(r'\2 \1\3')
 
### output ###
# m.string: hello world!
# m.re: 
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r'\2 \1\3'): world hello!

(2)re.search(pattern, string[, flags])

search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下

#导入re模块
import re
 
# 将正则表达式编译成Pattern对象
pattern = re.compile(r'world')
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = re.search(pattern,'hello world!')
if match:
  # 使用Match获得分组信息
  print match.group()
### 输出 ###
# world

(3)re.split(pattern, string[, maxsplit])

按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。

import re
 
pattern = re.compile(r'\d+')
print re.split(pattern,'one1two2three3four4')
 
### 输出 ###
# ['one', 'two', 'three', 'four', '']

(4)re.findall(pattern, string[, flags])

搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下
 
import re
 
pattern = re.compile(r'\d+')
print re.findall(pattern,'one1two2three3four4')
 
### 输出 ###
# ['1', '2', '3', '4']

(5)re.finditer(pattern, string[, flags])

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下

import re
 
pattern = re.compile(r'\d+')
for m in re.finditer(pattern,'one1two2three3four4'):
  print m.group(),
 
### 输出 ###
# 1 2 3 4

(6)re.sub(pattern, repl, string[, count])

使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。

import re
 
pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
 
print re.sub(pattern,r'\2 \1', s)
 
def func(m):
  return m.group(1).title() + ' ' + m.group(2).title()
 
print re.sub(pattern,func, s)
 
### output ###
# say i, world hello!
# I Say, Hello World!

(7)re.subn(pattern, repl, string[, count])

返回 (sub(repl, string[, count]), 替换次数)。


import re
 
pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
 
print re.subn(pattern,r'\2 \1', s)
 
def func(m):
  return m.group(1).title() + ' ' + m.group(2).title()
 
print re.subn(pattern,func, s)
 
### output ###
# ('say i, world hello!', 2)
# ('I Say, Hello World!', 2)

5.Python Re模块的另一种使用方式

在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样 调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。

函数API列表

match(string[, pos[, endpos]]) | re.match(pattern, string[, flags])
search(string[, pos[, endpos]]) | re.search(pattern, string[, flags])
split(string[, maxsplit]) | re.split(pattern, string[, maxsplit])
findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags])
finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags])
sub(repl, string[, count]) | re.sub(pattern, repl, string[, count])
subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])

具体的调用方法不必详说了,原理都类似,只是参数的变化不同。小伙伴们尝试一下吧~

小伙伴们加油,即使这一节看得云里雾里的也没关系,接下来我们会通过一些实战例子来帮助大家熟练掌握正则表达式的。

推荐阅读
  • 本文详细介绍了如何下载并安装 Python,包括选择合适的版本、执行安装程序以及设置环境变量的步骤。此外,还提供了测试安装是否成功的简单方法。 ... [详细]
  • 随着生活节奏的加快和压力的增加,越来越多的人感到不快乐。本文探讨了现代社会中导致人们幸福感下降的各种因素,并提供了一些改善建议。 ... [详细]
  • 本文介绍了 Python 的 Pmagick 库中用于图像处理的木炭滤镜方法,探讨其功能和用法,并通过实例演示如何应用该方法。 ... [详细]
  • 本文详细介绍了 Python 中的条件语句和循环结构。主要内容包括:1. 分支语句(if...elif...else);2. 循环语句(for, while 及嵌套循环);3. 控制循环的语句(break, continue, else)。通过具体示例,帮助读者更好地理解和应用这些语句。 ... [详细]
  • 解决Appium Doctor在Python自动化测试中的SyntaxError问题
    本文详细介绍了如何解决在使用Appium Doctor进行环境检查时遇到的SyntaxError: Unexpected token ...问题,并提供了完整的解决方案和最佳实践。 ... [详细]
  • 本文详细介绍了钩子(hook)的概念、原理及其在编程中的实际应用。通过对比回调函数和注册函数,解释了钩子的工作机制,并提供了具体的Python示例代码,帮助读者更好地理解和掌握这一重要编程工具。 ... [详细]
  • Python自动化测试入门:Selenium环境搭建
    本文详细介绍如何在Python环境中安装和配置Selenium,包括开发工具PyCharm的安装、Python环境的设置以及Selenium包的安装方法。此外,还提供了编写和运行第一个自动化测试脚本的步骤。 ... [详细]
  • 使用OpenCV和Python 4.2提升模糊图像清晰度
    本文介绍如何利用OpenCV库在Python中处理图像,特别是通过不同类型的滤波器来改善模糊图像的质量。我们将探讨均值、中值和自定义滤波器的应用,并展示代码示例。 ... [详细]
  • 优化Flask应用的并发处理:解决Mysql连接过多问题
    本文探讨了在Flask应用中通过优化后端架构来应对高并发请求,特别是针对Mysql 'too many connections' 错误的解决方案。我们将介绍如何利用Redis缓存、Gunicorn多进程和Celery异步任务队列来提升系统的性能和稳定性。 ... [详细]
  • 在处理数值数据时,有时需要将浮点数数组中的元素转换为整数。NumPy 提供了多种方法来实现这一目标,其中 np.trunc() 函数可以方便地对数组进行取整操作。 ... [详细]
  • MongoDB的核心特性与架构解析
    本文深入探讨了MongoDB的核心特性,包括其强大的查询语言、灵活的文档模型以及高效的索引机制。此外,还详细介绍了MongoDB的体系结构,解释了其文档、集合和数据库的层次关系,并对比了MongoDB与传统关系型数据库(如MySQL)的逻辑结构。 ... [详细]
  • 推荐几款高效测量图片像素的工具
    本文介绍了几款适用于Web前端开发的工具,这些工具可以帮助用户在图片上绘制线条并精确测量其像素长度。对于需要进行图像处理或设计工作的开发者来说非常实用。 ... [详细]
  • 本文介绍了Python编程中的字符串操作基础知识,包括字符串拼接、索引、子序列选择和查找。此外,还探讨了如何利用字符串处理技术从HTML代码中提取超链接信息,为简单的网页抓取打下基础。 ... [详细]
  • 配置PHPStudy环境并使用DVWA进行Web安全测试
    本文详细介绍了如何在PHPStudy环境下配置DVWA( Damn Vulnerable Web Application ),并利用该平台进行SQL注入和XSS攻击的练习。通过此过程,读者可以熟悉常见的Web漏洞及其利用方法。 ... [详细]
  • 本文详细介绍了Java中实现异步调用的多种方式,包括线程创建、Future接口、CompletableFuture类以及Spring框架的@Async注解。通过代码示例和深入解析,帮助读者理解并掌握这些技术。 ... [详细]
author-avatar
PHP_sunshine
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有