热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python的MongoDB模块PyMongo操作方法集锦

这篇文章主要介绍了Python的MongoDB模块PyMongo操作方法集锦,包括数据的增删查改以及索引等相关的基本操作,需要的朋友可以参考下
开始之前当然要导入模块啦:

>>> import pymongo

下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。

建立于MongoClient 的连接:

client = MongoClient('localhost', 27017)
# 或者
client = MongoClient('mongodb://localhost:27017/')

得到数据库:

>>> db = client.test_database
# 或者
>>> db = client['test-database']

得到一个数据集合:

collection = db.test_collection
# 或者
collection = db['test-collection']

MongoDB中的数据使用的是类似Json风格的文档:

>>> import datetime
>>> post = {"author": "Mike",
...     "text": "My first blog post!",
...     "tags": ["mongodb", "python", "pymongo"],
...     "date": datetime.datetime.utcnow()}

插入一个文档:

>>> posts = db.posts
>>> post_id = posts.insert_one(post).inserted_id
>>> post_id
ObjectId('...')

找一条数据:

>>> posts.find_one()
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

>>> posts.find_one({"author": "Mike"})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

>>> posts.find_one({"author": "Eliot"})
>>>

通过ObjectId来查找:

>>> post_id
ObjectId(...)
>>> posts.find_one({"_id": post_id})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

不要转化ObjectId的类型为String:

>>> post_id_as_str = str(post_id)
>>> posts.find_one({"_id": post_id_as_str}) # No result
>>>

如果你有一个post_id字符串,怎么办呢?

from bson.objectid import ObjectId

# The web framework gets post_id from the URL and passes it as a string
def get(post_id):
  # Convert from string to ObjectId:
  document = client.db.collection.find_one({'_id': ObjectId(post_id)})

多条插入:

>>> new_posts = [{"author": "Mike",
...        "text": "Another post!",
...        "tags": ["bulk", "insert"],
...        "date": datetime.datetime(2009, 11, 12, 11, 14)},
...       {"author": "Eliot",
...        "title": "MongoDB is fun",
...        "text": "and pretty easy too!",
...        "date": datetime.datetime(2009, 11, 10, 10, 45)}]
>>> result = posts.insert_many(new_posts)
>>> result.inserted_ids
[ObjectId('...'), ObjectId('...')]

查找多条数据:

>>> for post in posts.find():
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

当然也可以约束查找条件:

>>> for post in posts.find({"author": "Mike"}):
...  post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

获取集合的数据条数:

>>> posts.count()

或者说满足某种查找条件的数据条数:

>>> posts.find({"author": "Mike"}).count()

范围查找,比如说时间范围:

>>> d = datetime.datetime(2009, 11, 12, 12)
>>> for post in posts.find({"date": {"$lt": d}}).sort("author"):
...  print post
...
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

$lt是小于的意思。

如何建立索引呢?比如说下面这个查找:

>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BasicCursor'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

建立索引:

>>> from pymongo import ASCENDING, DESCENDING
>>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])
u'date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BtreeCursor date_-1_author_1'
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]


连接聚集

>>> account = db.Account
#或 
>>> account = db["Account"]

查看全部聚集名称

>>> db.collection_names()

查看聚集的一条记录

>>> db.Account.find_one()
 

>>> db.Account.find_one({"UserName":"keyword"})

查看聚集的字段

>>> db.Account.find_one({},{"UserName":1,"Email":1})
{u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'}
 

>>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0})
{u'UserName': u'libing', u'Email': u'libing@35.cn'}

查看聚集的多条记录

>>> for item in db.Account.find():
    item
 

>>> for item in db.Account.find({"UserName":"libing"}):
    item["UserName"]

查看聚集的记录统计

>>> db.Account.find().count()
 

>>> db.Account.find({"UserName":"keyword"}).count()

聚集查询结果排序

>>> db.Account.find().sort("UserName") #默认为升序
>>> db.Account.find().sort("UserName",pymongo.ASCENDING)  #升序
>>> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序

聚集查询结果多列排序

>>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])

添加记录

>>> db.Account.insert({"AccountID":21,"UserName":"libing"})

修改记录

>>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})

删除记录

>>> db.Account.remove()  -- 全部删除
 

>>> db.Test.remove({"UserName":"keyword"})

推荐阅读
  • 近期参与了一个旨在提高在线平台大规模查询响应速度的项目,预计处理的数据量为2-3亿条,数据库并发量约为每秒1500次,未来可能增至3000次。通过对比Redis和MongoDB,最终选择了MongoDB,因其具备优秀的横向扩展性和GridFS支持下的Map/Reduce功能。 ... [详细]
  • 最近团队在部署DLP,作为一个技术人员对于黑盒看不到的地方还是充满了好奇心。多次咨询乙方人员DLP的算法原理是什么,他们都以商业秘密为由避而不谈,不得已只能自己查资料学习,于是有了下面的浅见。身为甲方,虽然不需要开发DLP产品,但是也有必要弄明白DLP基本的原理。俗话说工欲善其事必先利其器,只有在懂这个工具的原理之后才能更加灵活地使用这个工具,即使出现意外情况也能快速排错,越接近底层,越接近真相。根据DLP的实际用途,本文将DLP检测分为2部分,泄露关键字检测和近似重复文档检测。 ... [详细]
  • 本文探讨了在通过 API 端点调用时,使用猫鼬(Mongoose)的 findOne 方法总是返回 null 的问题,并提供了详细的解决方案和建议。 ... [详细]
  • 基于Node.js、Express、MongoDB和Socket.io的实时聊天应用开发
    本文详细介绍了使用Node.js、Express、MongoDB和Socket.io构建的实时聊天应用程序。涵盖项目结构、技术栈选择及关键依赖项的配置。 ... [详细]
  • MongoDB的核心特性与架构解析
    本文深入探讨了MongoDB的核心特性,包括其强大的查询语言、灵活的文档模型以及高效的索引机制。此外,还详细介绍了MongoDB的体系结构,解释了其文档、集合和数据库的层次关系,并对比了MongoDB与传统关系型数据库(如MySQL)的逻辑结构。 ... [详细]
  • 本文将介绍如何利用Python爬虫技术抓取国内主流在线学习平台的数据,并以51CTO学院为例,进行详细的技术解析和实践操作。 ... [详细]
  • 利用 Jest 和 Supertest 实现接口测试的全面指南
    本文深入探讨了如何使用 Jest 和 Supertest 进行接口测试,通过实际案例详细解析了测试环境的搭建、测试用例的编写以及异步测试的处理方法。 ... [详细]
  • 58同城的Elasticsearch应用与平台构建实践
    本文由58同城高级架构师于伯伟分享,由陈树昌编辑整理,内容源自DataFunTalk。文章探讨了Elasticsearch作为分布式搜索和分析引擎的应用,特别是在58同城的实施案例,包括集群优化、典型应用实例及自动化平台建设等方面。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ... [详细]
  • 掌握远程执行Linux脚本和命令的技巧
    本文将详细介绍如何利用Python的Paramiko库实现远程执行Linux脚本和命令,帮助读者快速掌握这一实用技能。通过具体的示例和详尽的解释,让初学者也能轻松上手。 ... [详细]
  • 解决MongoDB Compass远程连接问题
    本文记录了在使用阿里云服务器部署MongoDB后,通过MongoDB Compass进行远程连接时遇到的问题及解决方案。详细介绍了从防火墙配置到安全组设置的各个步骤,帮助读者顺利解决问题。 ... [详细]
  • Spring Cloud因其强大的功能和灵活性,被誉为开发分布式系统的‘一站式’解决方案。它不仅简化了分布式系统中的常见模式实现,还被广泛应用于企业级生产环境中。本书内容详实,覆盖了从微服务基础到Spring Cloud的高级应用,适合各层次的开发者。 ... [详细]
  • 利用GitHub热门资源,成功斩获阿里、京东、腾讯三巨头Offer
    Spring框架作为Java生态系统中的重要组成部分,因其强大的功能和灵活的扩展性,被广泛应用于各种规模的企业级应用开发中。本文将通过一份在GitHub上获得极高评价的Spring全家桶文档,探讨如何掌握Spring框架及其相关技术,助力职业发展。 ... [详细]
  • ArchSummit深圳2014将于7月18日拉开帷幕,所有讲师已确认,涵盖9个热门话题,共36场精彩报告。InfoQ中文站提供了详细的讲师和报告列表。 ... [详细]
author-avatar
壹滒_918
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有