热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

大数据表的查询优化方案-mysql教程

如果有一张大表,表中的数据有几百万、几千万甚至上亿,要实现实时查询,查询的结果要在十秒钟之内出来,怎么办?如何做优化?本人现在做的项目中,有个表的数据超过1千万行,超过3G的数据。现在需要对表中的数据进行查询统计,之前由于没做优化,导致此表的

如果有一张大表,表中的数据有几百万、几千万甚至上亿,要实现实时查询,查询的结果要在十秒钟之内出来,怎么办?如何做优化? 本人现在做的项目中,有个表的数据超过1千万行,超过3G的数据。现在需要对表中的数据进行查询统计,之前由于没做优化,导致此表的

如果有一张大表,表中的数据有几百万、几千万甚至上亿,要实现实时查询,查询的结果要在十秒钟之内出来,怎么办?如何做优化?

本人现在做的项目中,有个表的数据超过1千万行,超过3G的数据。现在需要对表中的数据进行查询统计,之前由于没做优化,导致此表的查询效率非常低下,让使用者非常苦恼,于是本人参与了此表的优化。

举个类似的例子,比如表中的结构如下,现在要统计某一天出生的人口数,或者统计某一城市的人口数,或者某一城市某一天出生的人口数。

CREATE TABLE `population` (
  `population_id` bigint(64) NOT NULL AUTO_INCREMENT COMMENT '人口表',
  `name` varchar(128) COLLATE utf8_bin DEFAULT NULL COMMENT '姓名',
  `city` varchar(32) COLLATE utf8_bin DEFAULT NULL COMMENT '城市',
  `birthday` date DEFAULT NULL COMMENT '出生日期', 
  PRIMARY KEY (`population_id`)
)

查询某一城市某一天出生的人口数
SELECT COUNT(*) FROM population WHERE city='广州' AND birthday = '2014-11-02'
查询某一城市的人口数
SELECT COUNT(*) FROM population WHERE city='广州' 
查询某一天出生的人口数
SELECT COUNT(*) FROM population WHERE birthday = '2014-11-02'

提出了两个优化方案,

(1).优化索引

通过添加索引后,查询的效率得到极大的提升,常用查询的查询时间从原来的几十秒下降到几秒。

建立以下两个单列索引

ALTER TABLE `population`   
  ADD  INDEX `fk_city` (`city`),
  ADD  INDEX `fk_birthday` (`birthday`);

也可以建立以下两个组合索引

ALTER TABLE `population`   
  ADD  INDEX `fk_index1` (`city`, `birthday`),
  ADD  INDEX `fk_index2` (`birthday`, `city`);

(2).使用中间表
虽然索引优化可以将查询时间大大减少,但如果数据量达到一定量时,有些情况下索引到的数据达到几百万时,查询仍然会很慢,因此索引优化无法从根本上解决问题。现在表中的数据量越来越大,平均每个月要增加一两百万的数据,索引的优化方法只是暂时的,只能解决小数据量的查询问题,随着数据量的快速增长,索引带来的性能优化很容易达到极限,要寻找其他的解决方案。

我们根据业务需求的特点,创建中间表population_statistics,将表population中的统计数据存放到中间表population_statistics中,查询时直接从中间表population_statistics中查询。注意,在对表population进行增、删、改时,必须同时更新population_statistics中的数据,否则会出现数据不一致的错误!

CREATE TABLE `population_statistics` (
  `population_statistics_id` bigint(64) NOT NULL AUTO_INCREMENT COMMENT '人口统计表ID',
  `city` varchar(128) COLLATE utf8_bin DEFAULT NULL COMMENT '城市',
  `birthday` int(32) DEFAULT NULL COMMENT '出生日期',
  `total_count` int(32) DEFAULT NULL COMMENT '人口数量',
  PRIMARY KEY (`population_statistics_id`),
  KEY `fk_city` (`city`),
  KEY `fk_birthday` (`birthday`)
)
查询某一城市某一天出生的人口数
SELECT total_count FROM population_statistics WHERE city='广州' AND birthday = '2014-11-02';
查询某一城市的人口数
SELECT COUNT(total_count) FROM population_statistics WHERE city='广州';
查询某一天出生的人口数
SELECT COUNT(total_count) FROM population_statistics WHERE birthday = '2014-11-02';

某个城市某一天的人口在表population中可能有几千甚至万的数据,而在统计表population_statistics中最多只有一条数据,也就是说统计表population_statistics中的数据量只有人口表population的几千分之一,再加上索引的优化,查询的速度会极大提高。

下面总结一下常用的大数据表优化方案.

1. 索引优化

通过建立合理高效的索引,提高查询的速度.

建议阅读本人写的一篇关于索引的博客

http://blog.csdn.net/brushli/article/details/39677387

2. SQL优化

组织优化SQL语句,使查询效率达到最优,在很多情况下要考虑索引的作用.

建议阅读考本人写的一篇关于索引的博客

http://blog.csdn.net/brushli/article/details/39677387

3. 水平拆表

如果表中的数据呈现出某一类特性,比如呈现时间特性,那么可以根据时间段将表拆分成多个。

比如按年划分、按季度划分、按月划分等等,查询时按时间段进行拆分查询,再把查询结果进行合并;

比如按地区将表拆分,不同地区的数据放在不同的表里面,然后对查询进行分拆,对查询结果进行合并。

4. 垂直拆表

将表按字段拆分成多个表,常用的字段放在一个表,不常用的字段或大字段放在另外一个表。由于数据库每次查询都是以块为单位,而每块的容量是有限的,通常是十几K或几十K,将表按字段拆分后,单次IO所能检索到的行数通常会提高很多,查询效率就能提高上去。

比如有成员表,结构如下:

CREATE TABLE `member` (
  `member_id` bigint(64) NOT NULL AUTO_INCREMENT COMMENT '成员表ID',
  `name` varchar(128) COLLATE utf8_bin DEFAULT NULL COMMENT '成员姓名',
  `age` int(32) DEFAULT NULL COMMENT '成员年龄',
  `introduction` text COLLATE utf8_bin COMMENT '成员介绍',
  PRIMARY KEY (`member_id`)
)

introduction是大字段,保存成员的介绍,这个大字段会严重影响查询效率,可以将它独立出来,单独形成一个表。

CREATE TABLE `member` (
  `member_id` bigint(64) NOT NULL AUTO_INCREMENT COMMENT '成员表ID',
  `name` varchar(128) COLLATE utf8_bin DEFAULT NULL COMMENT '成员姓名',
  `age` int(32) DEFAULT NULL COMMENT '成员年龄',
  PRIMARY KEY (`member_id`)
)

CREATE TABLE `member_introduction` (
  `member_introduction_id` bigint(64) NOT NULL AUTO_INCREMENT COMMENT '成员介绍表ID',
  `member_id` bigint(64) DEFAULT NULL COMMENT '成员ID',
  `introduction` text COLLATE utf8_bin COMMENT '成员介绍',
  PRIMARY KEY (`member_introduction_id`),
  KEY `fk_member_id` (`member_id`),
  CONSTRAINT `fk_member_id` FOREIGN KEY (`member_id`) REFERENCES `member` (`member_id`)
)

5. 建立中间表,以空间换时间

在有些情况下,是可以通过建立中间表来加快查询速度的,详情可看文章开头的例子。

6. 用内存缓存数据,以空间换时间

将常用而且不常修改的数据加载到内存中,直接从内存查询则可。

可以使用热门的缓存技术,如Memcache、Redis、Ehcache等。

7. 使用其他辅助技术

Solr:一种基于Lucene的JAVA搜索引擎技术


推荐阅读
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 本文详细介绍了Python编程语言的学习路径,涵盖基础语法、常用组件、开发工具、数据库管理、Web服务开发、大数据分析、人工智能、爬虫开发及办公自动化等多个方向。通过系统化的学习计划,帮助初学者快速掌握Python的核心技能。 ... [详细]
  • 本文详细介绍了如何使用libpq库与PostgreSQL后端建立连接。通过探讨PQconnectdb()函数的工作原理及其在实际应用中的使用方法,帮助读者理解并掌握建立高效、稳定的数据库连接的关键步骤。 ... [详细]
  • 本文介绍如何通过Windows批处理脚本定期检查并重启Java应用程序,确保其持续稳定运行。脚本每30分钟检查一次,并在需要时重启Java程序。同时,它会将任务结果发送到Redis。 ... [详细]
  • 深入解析:阿里实战 SpringCloud 微服务架构与应用
    本文将详细介绍 SpringCloud 在微服务架构中的应用,涵盖入门、实战和案例分析。通过丰富的代码示例和实际项目经验,帮助读者全面掌握 SpringCloud 的核心技术和最佳实践。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • 本文深入探讨了 Redis 的两种持久化方式——RDB 快照和 AOF 日志。详细介绍了它们的工作原理、配置方法以及各自的优缺点,帮助读者根据具体需求选择合适的持久化方案。 ... [详细]
  • Redis Hash 数据结构详解
    本文详细介绍了 Redis 中的 Hash 数据类型及其常用命令。Hash 类型用于存储键值对集合,支持多种操作如插入、查询、更新和删除字段值。此外,文章还探讨了 Hash 类型在实际业务场景中的应用,并提供了优化建议。 ... [详细]
  • 科研单位信息系统中的DevOps实践与优化
    本文探讨了某科研单位通过引入云原生平台实现DevOps开发和运维一体化,显著提升了项目交付效率和产品质量。详细介绍了如何在实际项目中应用DevOps理念,解决了传统开发模式下的诸多痛点。 ... [详细]
  • 本文详细探讨了如何在Docker环境中实现单机部署Redis集群的方法,提供了详细的步骤和配置示例,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 随着Redis功能的不断增强和稳定性提升,其应用范围日益广泛,成为软件开发人员不可或缺的技能之一。本文将深入探讨Redis集群的部署与优化,包括主从备份机制、哨兵模式以及集群功能,帮助读者全面理解并掌握Redis集群的应用。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 本文探讨了哪些数据库支持队列式的写入操作(即一个键对应一个队列,数据可以连续入队),并且具备良好的持久化特性。这类需求通常出现在需要高效处理和存储大量有序数据的场景中。 ... [详细]
  • Windows 7 64位系统下Redis的安装与PHP Redis扩展配置
    本文详细介绍了在Windows 7 64位操作系统中安装Redis以及配置PHP Redis扩展的方法,包括下载、安装和基本使用步骤。适合对Redis和PHP集成感兴趣的开发人员参考。 ... [详细]
author-avatar
燕子yanzi068_476
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有