热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

multiprocessingpython_每周一个Python模块|multiprocessing

multiprocessing是Python的标准模块,它既可以用来编写多进程,也可以用来编写多线程。如果是多线程的话,用multipro
4ee4412f8149ed86b8bd4e78fdd3a20d.png

multiprocessing 是 Python 的标准模块,它既可以用来编写多进程,也可以用来编写多线程。如果是多线程的话,用 multiprocessing.dummy 即可,用法与 multiprocessing 基本相同。

基础

利用 multiprocessing.Process 对象可以创建一个进程,Process 对象与 Thread 对象的用法相同,也有 start(), run(), join() 等方法。Process 类适合简单的进程创建,如需资源共享可以结合 multiprocessing.Queue 使用;如果想要控制进程数量,则建议使用进程池 Pool 类。

Process 介绍:

构造方法:

  • Process([group [, target [, name [, args [, kwargs]]]]])
  • group: 线程组,目前还没有实现,库引用中提示必须是 None;
  • target: 要执行的方法;
  • name: 进程名;
  • args/kwargs: 要传入方法的参数。

实例方法:

  • is_alive():返回进程是否在运行。
  • join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的 timeout(可选参数)。
  • start():进程准备就绪,等待 CPU 调度。
  • run():strat() 调用 run 方法,如果实例进程时未制定传入 target,start 执行默认 run() 方法。
  • terminate():不管任务是否完成,立即停止工作进程。

属性:

  • authkey
  • daemon:和线程的 setDeamon 功能一样(将父进程设置为守护进程,当父进程结束时,子进程也结束)。
  • exitcode(进程在运行时为 None、如果为 –N,表示被信号 N 结束)。
  • name:进程名字。
  • pid:进程号。

下面看一个简单的例子:

import multiprocessingdef worker(): """worker function""" print('Worker')if __name__ == '__main__': jobs = [] for i in range(5): p = multiprocessing.Process(target=worker) jobs.append(p) p.start()# 输出# Worker# Worker# Worker# Worker# Worker

输出结果是打印了五次 Worker,我们并不知道哪个 Worker 是由哪个进程打印的,具体取决于执行顺序,因为每个进程都在竞争访问输出流。

那怎样才能知道具体执行顺序呢?可以通过给进程传参来实现。与 threading 不同,传递给 multiprocessing Process 的参数必需是可序列化的,来看一下代码:

import multiprocessingdef worker(num): """thread worker function""" print('Worker:', num)if __name__ == '__main__': jobs = [] for i in range(5): p = multiprocessing.Process(target=worker, args=(i,)) jobs.append(p) p.start() # 输出# Worker: 1# Worker: 0# Worker: 2# Worker: 3# Worker: 4

可导入的目标函数

threading 和 multiprocessing 的一处区别是在 __main__ 中使用时的额外保护。由于进程已经启动,子进程需要能够导入包含目标函数的脚本。在 __main__ 中包装应用程序的主要部分,可确保在导入模块时不会在每个子项中递归运行它。另一种方法是从单独的脚本导入目标函数。例如:multiprocessing_import_main.py使用在第二个模块中定义的 worker 函数。

# multiprocessing_import_main.py import multiprocessingimport multiprocessing_import_workerif __name__ == '__main__': jobs = [] for i in range(5): p = multiprocessing.Process( target=multiprocessing_import_worker.worker, ) jobs.append(p) p.start() # 输出# Worker# Worker# Worker# Worker# Worker

worker 函数定义于multiprocessing_import_worker.py。

# multiprocessing_import_worker.py def worker(): """worker function""" print('Worker') return

确定当前进程

传参来识别或命名进程非常麻烦,也不必要。每个Process实例都有一个名称,其默认值可以在创建进程时更改。命名进程对于跟踪它们非常有用,尤其是在同时运行多种类型进程的应用程序中。

import multiprocessingimport timedef worker(): name = multiprocessing.current_process().name print(name, 'Starting') time.sleep(2) print(name, 'Exiting')def my_service(): name = multiprocessing.current_process().name print(name, 'Starting') time.sleep(3) print(name, 'Exiting')if __name__ == '__main__': service = multiprocessing.Process( name='my_service', target=my_service, ) worker_1 = multiprocessing.Process( name='worker 1', target=worker, ) worker_2 = multiprocessing.Process( # default name target=worker, ) worker_1.start() worker_2.start() service.start() # output# worker 1 Starting# worker 1 Exiting# Process-3 Starting# Process-3 Exiting# my_service Starting# my_service Exiting

守护进程

默认情况下,在所有子进程退出之前,主程序不会退出。有些时候,启动后台进程运行而不阻止主程序退出是有用的,例如为监视工具生成“心跳”的任务。

要将进程标记为守护程序很简单,只要将daemon属性设置为 True 就可以了。

import multiprocessingimport timeimport sysdef daemon(): p = multiprocessing.current_process() print('Starting:', p.name, p.pid) sys.stdout.flush() time.sleep(2) print('Exiting :', p.name, p.pid) sys.stdout.flush()def non_daemon(): p = multiprocessing.current_process() print('Starting:', p.name, p.pid) sys.stdout.flush() print('Exiting :', p.name, p.pid) sys.stdout.flush()if __name__ == '__main__': d = multiprocessing.Process( name='daemon', target=daemon, ) d.daemon = True n = multiprocessing.Process( name='non-daemon', target=non_daemon, ) n.daemon = False d.start() time.sleep(1) n.start() # output# Starting: daemon 41838# Starting: non-daemon 41841# Exiting : non-daemon 41841

输出不包括来自守护进程的“退出”消息,因为所有非守护进程(包括主程序)在守护进程从两秒休眠状态唤醒之前退出。

守护进程在主程序退出之前自动终止,这避免了孤立进程的运行。这可以通过查找程序运行时打印的进程 ID 值来验证,然后使用 ps 命令检查该进程。

等待进程

要等到进程完成其工作并退出,请使用 join()方法。

import multiprocessingimport timeimport sysdef daemon(): name = multiprocessing.current_process().name print('Starting:', name) time.sleep(2) print('Exiting :', name)def non_daemon(): name = multiprocessing.current_process().name print('Starting:', name) print('Exiting :', name)if __name__ == '__main__': d = multiprocessing.Process( name='daemon', target=daemon, ) d.daemon = True n = multiprocessing.Process( name='non-daemon', target=non_daemon, ) n.daemon = False d.start() time.sleep(1) n.start() d.join() n.join() # output# Starting: non-daemon# Exiting : non-daemon# Starting: daemon# Exiting : daemon

由于主进程使用 join() 等待守护进程退出,因此此时将打印“退出”消息。

默认情况下,join()无限期地阻止。也可以传递一个超时参数(一个浮点数表示等待进程变为非活动状态的秒数)。如果进程未在超时期限内完成,则join()无论如何都要返回。

import multiprocessingimport timeimport sysdef daemon(): name = multiprocessing.current_process().name print('Starting:', name) time.sleep(2) print('Exiting :', name)def non_daemon(): name = multiprocessing.current_process().name print('Starting:', name) print('Exiting :', name)if __name__ == '__main__': d = multiprocessing.Process( name='daemon', target=daemon, ) d.daemon = True n = multiprocessing.Process( name='non-daemon', target=non_daemon, ) n.daemon = False d.start() n.start() d.join(1) print('d.is_alive()', d.is_alive()) n.join() # output# Starting: non-daemon# Exiting : non-daemon# d.is_alive() True

由于传递的超时时间小于守护进程休眠的时间,因此join()返回后进程仍处于“活动”状态。

终止进程

如果想让一个进程退出,最好使用「poison pill」方法向它发送信号,如果进程出现挂起或死锁,那么强制终止它是有用的。 调用 terminate() 来杀死子进程。

import multiprocessingimport timedef slow_worker(): print('Starting worker') time.sleep(0.1) print('Finished worker')if __name__ == '__main__': p = multiprocessing.Process(target=slow_worker) print('BEFORE:', p, p.is_alive()) p.start() print('DURING:', p, p.is_alive()) p.terminate() print('TERMINATED:', p, p.is_alive()) p.join() print('JOINED:', p, p.is_alive()) # output# BEFORE: False# DURING: True# TERMINATED: True# JOINED: False

在终止它之后对该进程使用 join() 很重要,可以为进程管理代码提供时间来更新对象状态,用以反映终止效果。

处理退出状态

可以通过exitcode属性访问进程退出时生成的状态代码。允许的范围列于下表中。

退出代码含义&#61;&#61; 0没有产生错误> 0该进程出错&#xff0c;并退出该代码<0这个过程被一个信号杀死了 -1 * exitcode

import multiprocessingimport sysimport timedef exit_error(): sys.exit(1)def exit_ok(): returndef return_value(): return 1def raises(): raise RuntimeError(&#39;There was an error!&#39;)def terminated(): time.sleep(3)if __name__ &#61;&#61; &#39;__main__&#39;: jobs &#61; [] funcs &#61; [ exit_error, exit_ok, return_value, raises, terminated, ] for f in funcs: print(&#39;Starting process for&#39;, f.__name__) j &#61; multiprocessing.Process(target&#61;f, name&#61;f.__name__) jobs.append(j) j.start() jobs[-1].terminate() for j in jobs: j.join() print(&#39;{:>15}.exitcode &#61; {}&#39;.format(j.name, j.exitcode)) # output# Starting process for exit_error# Starting process for exit_ok# Starting process for return_value# Starting process for raises# Starting process for terminated# Process raises:# Traceback (most recent call last):# File ".../lib/python3.6/multiprocessing/process.py", line 258,# in _bootstrap# self.run()# File ".../lib/python3.6/multiprocessing/process.py", line 93,# in run# self._target(*self._args, **self._kwargs)# File "multiprocessing_exitcode.py", line 28, in raises# raise RuntimeError(&#39;There was an error!&#39;)# RuntimeError: There was an error!# exit_error.exitcode &#61; 1# exit_ok.exitcode &#61; 0# return_value.exitcode &#61; 0# raises.exitcode &#61; 1# terminated.exitcode &#61; -15

记录日志

在调试并发问题时&#xff0c;访问 multiprocessing 对象的内部结构很有用。有一个方便的模块级功能来启用被调用的日志&#xff0c;叫 log_to_stderr()。它使用logging并添加处理程序来设置记录器对象 &#xff0c;以便将日志消息发送到标准错误通道。

import multiprocessingimport loggingimport sysdef worker(): print(&#39;Doing some work&#39;) sys.stdout.flush()if __name__ &#61;&#61; &#39;__main__&#39;: multiprocessing.log_to_stderr(logging.DEBUG) p &#61; multiprocessing.Process(target&#61;worker) p.start() p.join() # output# [INFO/Process-1] child process calling self.run()# Doing some work# [INFO/Process-1] process shutting down# [DEBUG/Process-1] running all "atexit" finalizers with priority >&#61; 0# [DEBUG/Process-1] running the remaining "atexit" finalizers# [INFO/Process-1] process exiting with exitcode 0# [INFO/MainProcess] process shutting down# [DEBUG/MainProcess] running all "atexit" finalizers with priority >&#61; 0# [DEBUG/MainProcess] running the remaining "atexit" finalizers

默认情况下&#xff0c;日志记录级别设置为NOTSET不生成任何消息。传递不同的级别以将记录器初始化为所需的详细程度。

要直接操作记录器(更改其级别设置或添加处理程序)&#xff0c;请使用get_logger()。

import multiprocessingimport loggingimport sysdef worker(): print(&#39;Doing some work&#39;) sys.stdout.flush()if __name__ &#61;&#61; &#39;__main__&#39;: multiprocessing.log_to_stderr() logger &#61; multiprocessing.get_logger() logger.setLevel(logging.INFO) p &#61; multiprocessing.Process(target&#61;worker) p.start() p.join() # output# [INFO/Process-1] child process calling self.run()# Doing some work# [INFO/Process-1] process shutting down# [INFO/Process-1] process exiting with exitcode 0# [INFO/MainProcess] process shutting down

子类化过程

虽然在单独的进程中启动子进程的最简单方法是使用Process并传递目标函数&#xff0c;但也可以使用自定义子类。

import multiprocessingclass Worker(multiprocessing.Process): def run(self): print(&#39;In {}&#39;.format(self.name)) returnif __name__ &#61;&#61; &#39;__main__&#39;: jobs &#61; [] for i in range(5): p &#61; Worker() jobs.append(p) p.start() for j in jobs: j.join() # output# In Worker-1# In Worker-3# In Worker-2# In Worker-4# In Worker-5

派生类应该重写run()以完成其工作。

向进程传递消息

与线程一样&#xff0c;多个进程的常见使用模式是将作业划分为多个工作并行运行。有效使用多个流程通常需要在它们之间进行一些通信&#xff0c;以便可以划分工作并汇总结果。在进程之间通信的一种简单方法是使用 Queue来传递消息。任何可以通过 pickle 序列化的对象都可以传递给 Queue。

import multiprocessingclass MyFancyClass: def __init__(self, name): self.name &#61; name def do_something(self): proc_name &#61; multiprocessing.current_process().name print(&#39;Doing something fancy in {} for {}!&#39;.format(proc_name, self.name))def worker(q): obj &#61; q.get() obj.do_something()if __name__ &#61;&#61; &#39;__main__&#39;: queue &#61; multiprocessing.Queue() p &#61; multiprocessing.Process(target&#61;worker, args&#61;(queue,)) p.start() queue.put(MyFancyClass(&#39;Fancy Dan&#39;)) # Wait for the worker to finish queue.close() queue.join_thread() p.join() # output# Doing something fancy in Process-1 for Fancy Dan!

这个简短的示例仅将单个消息传递给单个工作程序&#xff0c;然后主进程等待工作程序完成。

下面看一个更复杂例子&#xff0c;它显示了如何管理多个从 JoinableQueue 消耗数据的 worker&#xff0c;并将结果传递回父进程。「poison pill」技术用来终止 workers。设置实际任务后&#xff0c;主程序会将每个工作程序的一个“停止”值添加到队列中。当 worker 遇到特殊值时&#xff0c;它会从循环中跳出。主进程使用任务队列的join()方法在处理结果之前等待所有任务完成。

import multiprocessingimport timeclass Consumer(multiprocessing.Process): def __init__(self, task_queue, result_queue): multiprocessing.Process.__init__(self) self.task_queue &#61; task_queue self.result_queue &#61; result_queue def run(self): proc_name &#61; self.name while True: next_task &#61; self.task_queue.get() if next_task is None: # Poison pill means shutdown print(&#39;{}: Exiting&#39;.format(proc_name)) self.task_queue.task_done() break print(&#39;{}: {}&#39;.format(proc_name, next_task)) answer &#61; next_task() self.task_queue.task_done() self.result_queue.put(answer)class Task: def __init__(self, a, b): self.a &#61; a self.b &#61; b def __call__(self): time.sleep(0.1) # pretend to take time to do the work return &#39;{self.a} * {self.b} &#61; {product}&#39;.format( self&#61;self, product&#61;self.a * self.b) def __str__(self): return &#39;{self.a} * {self.b}&#39;.format(self&#61;self)if __name__ &#61;&#61; &#39;__main__&#39;: # Establish communication queues tasks &#61; multiprocessing.JoinableQueue() results &#61; multiprocessing.Queue() # Start consumers num_consumers &#61; multiprocessing.cpu_count() * 2 print(&#39;Creating {} consumers&#39;.format(num_consumers)) consumers &#61; [ Consumer(tasks, results) for i in range(num_consumers) ] for w in consumers: w.start() # Enqueue jobs num_jobs &#61; 10 for i in range(num_jobs): tasks.put(Task(i, i)) # Add a poison pill for each consumer for i in range(num_consumers): tasks.put(None) # Wait for all of the tasks to finish tasks.join() # Start printing results while num_jobs: result &#61; results.get() print(&#39;Result:&#39;, result) num_jobs -&#61; 1 # output# Creating 8 consumers# Consumer-1: 0 * 0# Consumer-2: 1 * 1# Consumer-3: 2 * 2# Consumer-4: 3 * 3# Consumer-5: 4 * 4# Consumer-6: 5 * 5# Consumer-7: 6 * 6# Consumer-8: 7 * 7# Consumer-3: 8 * 8# Consumer-7: 9 * 9# Consumer-4: Exiting# Consumer-1: Exiting# Consumer-2: Exiting# Consumer-5: Exiting# Consumer-6: Exiting# Consumer-8: Exiting# Consumer-7: Exiting# Consumer-3: Exiting# Result: 6 * 6 &#61; 36# Result: 2 * 2 &#61; 4# Result: 3 * 3 &#61; 9# Result: 0 * 0 &#61; 0# Result: 1 * 1 &#61; 1# Result: 7 * 7 &#61; 49# Result: 4 * 4 &#61; 16# Result: 5 * 5 &#61; 25# Result: 8 * 8 &#61; 64# Result: 9 * 9 &#61; 81

尽管作业按顺序进入队列&#xff0c;但它们的执行是并行化的&#xff0c;因此无法保证它们的完成顺序。

进程间通信

Event类提供一种简单的方式进行进程之间的通信。可以在设置和未设置状态之间切换事件。事件对象的用户可以使用可选的超时值等待它从未设置更改为设置。

import multiprocessingimport timedef wait_for_event(e): """Wait for the event to be set before doing anything""" print(&#39;wait_for_event: starting&#39;) e.wait() print(&#39;wait_for_event: e.is_set()->&#39;, e.is_set())def wait_for_event_timeout(e, t): """Wait t seconds and then timeout""" print(&#39;wait_for_event_timeout: starting&#39;) e.wait(t) print(&#39;wait_for_event_timeout: e.is_set()->&#39;, e.is_set())if __name__ &#61;&#61; &#39;__main__&#39;: e &#61; multiprocessing.Event() w1 &#61; multiprocessing.Process( name&#61;&#39;block&#39;, target&#61;wait_for_event, args&#61;(e,), ) w1.start() w2 &#61; multiprocessing.Process( name&#61;&#39;nonblock&#39;, target&#61;wait_for_event_timeout, args&#61;(e, 2), ) w2.start() print(&#39;main: waiting before calling Event.set()&#39;) time.sleep(3) e.set() print(&#39;main: event is set&#39;) # output# main: waiting before calling Event.set()# wait_for_event: starting# wait_for_event_timeout: starting# wait_for_event_timeout: e.is_set()-> False# main: event is set# wait_for_event: e.is_set()-> True

如果wait()超时&#xff0c;不会返回错误。调用者可以使用 is_set() 检查事件的状态。

控制对资源的访问

在多个进程之间共享单个资源的情况下&#xff0c;可以用 Lock 来避免访问冲突。

import multiprocessingimport sysdef worker_with(lock, stream): with lock: stream.write(&#39;Lock acquired via with&#39;)def worker_no_with(lock, stream): lock.acquire() try: stream.write(&#39;Lock acquired directly&#39;) finally: lock.release()lock &#61; multiprocessing.Lock()w &#61; multiprocessing.Process( target&#61;worker_with, args&#61;(lock, sys.stdout),)nw &#61; multiprocessing.Process( target&#61;worker_no_with, args&#61;(lock, sys.stdout),)w.start()nw.start()w.join()nw.join()# output# Lock acquired via with# Lock acquired directly

在此示例中&#xff0c;如果两个进程不同步它们对标准输出的访问与锁定&#xff0c;则打印到控制台的消息可能混杂在一起。

同步操作

Condition 对象可用于同步工作流的一部分&#xff0c;可以使某些对象并行运行&#xff0c;但其他对象顺序运行&#xff0c;即使它们位于不同的进程中。

import multiprocessingimport timedef stage_1(cond): """ perform first stage of work, then notify stage_2 to continue """ name &#61; multiprocessing.current_process().name print(&#39;Starting&#39;, name) with cond: print(&#39;{} done and ready for stage 2&#39;.format(name)) cond.notify_all()def stage_2(cond): """wait for the condition telling us stage_1 is done""" name &#61; multiprocessing.current_process().name print(&#39;Starting&#39;, name) with cond: cond.wait() print(&#39;{} running&#39;.format(name))if __name__ &#61;&#61; &#39;__main__&#39;: condition &#61; multiprocessing.Condition() s1 &#61; multiprocessing.Process(name&#61;&#39;s1&#39;, target&#61;stage_1, args&#61;(condition,)) s2_clients &#61; [ multiprocessing.Process( name&#61;&#39;stage_2[{}]&#39;.format(i), target&#61;stage_2, args&#61;(condition,), ) for i in range(1, 3) ] for c in s2_clients: c.start() time.sleep(1) s1.start() s1.join() for c in s2_clients: c.join() # output# Starting stage_2[1]# Starting stage_2[2]# Starting s1# s1 done and ready for stage 2# stage_2[1] running# stage_2[2] running

在此示例中&#xff0c;两个进程并行运行 stage_2&#xff0c;但仅在 stage_1 完成后运行。

控制对资源的并发访问

有时&#xff0c;允许多个 worker 同时访问资源是有用的&#xff0c;同时仍限制总数。例如&#xff0c;连接池可能支持固定数量的并发连接&#xff0c;或者网络应用程序可能支持固定数量的并发下载。Semaphore 是管理这些连接的一种方法。

import randomimport multiprocessingimport timeclass ActivePool: def __init__(self): super(ActivePool, self).__init__() self.mgr &#61; multiprocessing.Manager() self.active &#61; self.mgr.list() self.lock &#61; multiprocessing.Lock() def makeActive(self, name): with self.lock: self.active.append(name) def makeInactive(self, name): with self.lock: self.active.remove(name) def __str__(self): with self.lock: return str(self.active)def worker(s, pool): name &#61; multiprocessing.current_process().name with s: pool.makeActive(name) print(&#39;Activating {} now running {}&#39;.format(name, pool)) time.sleep(random.random()) pool.makeInactive(name)if __name__ &#61;&#61; &#39;__main__&#39;: pool &#61; ActivePool() s &#61; multiprocessing.Semaphore(3) jobs &#61; [ multiprocessing.Process( target&#61;worker, name&#61;str(i), args&#61;(s, pool), ) for i in range(10) ] for j in jobs: j.start() while True: alive &#61; 0 for j in jobs: if j.is_alive(): alive &#43;&#61; 1 j.join(timeout&#61;0.1) print(&#39;Now running {}&#39;.format(pool)) if alive &#61;&#61; 0: # all done break# output # Activating 0 now running [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]# Activating 1 now running [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]# Activating 2 now running [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]# Now running [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]# Now running [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]# Now running [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]# Now running [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]# Activating 3 now running [&#39;0&#39;, &#39;1&#39;, &#39;3&#39;]# Activating 4 now running [&#39;1&#39;, &#39;3&#39;, &#39;4&#39;]# Activating 6 now running [&#39;1&#39;, &#39;4&#39;, &#39;6&#39;]# Now running [&#39;1&#39;, &#39;4&#39;, &#39;6&#39;]# Now running [&#39;1&#39;, &#39;4&#39;, &#39;6&#39;]# Activating 5 now running [&#39;1&#39;, &#39;4&#39;, &#39;5&#39;]# Now running [&#39;1&#39;, &#39;4&#39;, &#39;5&#39;]# Now running [&#39;1&#39;, &#39;4&#39;, &#39;5&#39;]# Now running [&#39;1&#39;, &#39;4&#39;, &#39;5&#39;]# Activating 8 now running [&#39;4&#39;, &#39;5&#39;, &#39;8&#39;]# Now running [&#39;4&#39;, &#39;5&#39;, &#39;8&#39;]# Now running [&#39;4&#39;, &#39;5&#39;, &#39;8&#39;]# Now running [&#39;4&#39;, &#39;5&#39;, &#39;8&#39;]# Now running [&#39;4&#39;, &#39;5&#39;, &#39;8&#39;]# Now running [&#39;4&#39;, &#39;5&#39;, &#39;8&#39;]# Activating 7 now running [&#39;5&#39;, &#39;8&#39;, &#39;7&#39;]# Now running [&#39;5&#39;, &#39;8&#39;, &#39;7&#39;]# Activating 9 now running [&#39;8&#39;, &#39;7&#39;, &#39;9&#39;]# Now running [&#39;8&#39;, &#39;7&#39;, &#39;9&#39;]# Now running [&#39;8&#39;, &#39;9&#39;]# Now running [&#39;8&#39;, &#39;9&#39;]# Now running [&#39;9&#39;]# Now running [&#39;9&#39;]# Now running [&#39;9&#39;]# Now running [&#39;9&#39;]# Now running []

在此示例中&#xff0c;ActivePool 类仅用作跟踪在给定时刻正在运行的进程的便捷方式。实际资源池可能会为新活动的进程分配连接或其他值&#xff0c;并在任务完成时回收该值。这里&#xff0c;pool 只用于保存活动进程的名称&#xff0c;以显示只有三个并发运行。

管理共享状态

在前面的示例中&#xff0c;首先通过 Manager 创建特殊类型的列表&#xff0c;然后活动进程列表通过 ActivePool 在实例中集中维护。Manager负责协调所有用户之间共享信息的状态。

import multiprocessingimport pprintdef worker(d, key, value): d[key] &#61; valueif __name__ &#61;&#61; &#39;__main__&#39;: mgr &#61; multiprocessing.Manager() d &#61; mgr.dict() jobs &#61; [ multiprocessing.Process( target&#61;worker, args&#61;(d, i, i * 2), ) for i in range(10) ] for j in jobs: j.start() for j in jobs: j.join() print(&#39;Results:&#39;, d) # output# Results: {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18}

通过管理器创建列表&#xff0c;它将被共享&#xff0c;并且可以在所有进程中看到更新。字典也支持。

共享命名空间

除了字典和列表&#xff0c;Manager还可以创建共享Namespace。

import multiprocessingdef producer(ns, event): ns.value &#61; &#39;This is the value&#39; event.set()def consumer(ns, event): try: print(&#39;Before event: {}&#39;.format(ns.value)) except Exception as err: print(&#39;Before event, error:&#39;, str(err)) event.wait() print(&#39;After event:&#39;, ns.value)if __name__ &#61;&#61; &#39;__main__&#39;: mgr &#61; multiprocessing.Manager() namespace &#61; mgr.Namespace() event &#61; multiprocessing.Event() p &#61; multiprocessing.Process( target&#61;producer, args&#61;(namespace, event), ) c &#61; multiprocessing.Process( target&#61;consumer, args&#61;(namespace, event), ) c.start() p.start() c.join() p.join() # output# Before event, error: &#39;Namespace&#39; object has no attribute &#39;value&#39;# After event: This is the value

只要添加到命名空间Namespace&#xff0c;那么所有接收Namespace实例的客户端都可见。

重要的是&#xff0c;要知道命名空间中可变值内容的更新不会自动传播。

import multiprocessingdef producer(ns, event): # DOES NOT UPDATE GLOBAL VALUE! ns.my_list.append(&#39;This is the value&#39;) event.set()def consumer(ns, event): print(&#39;Before event:&#39;, ns.my_list) event.wait() print(&#39;After event :&#39;, ns.my_list)if __name__ &#61;&#61; &#39;__main__&#39;: mgr &#61; multiprocessing.Manager() namespace &#61; mgr.Namespace() namespace.my_list &#61; [] event &#61; multiprocessing.Event() p &#61; multiprocessing.Process( target&#61;producer, args&#61;(namespace, event), ) c &#61; multiprocessing.Process( target&#61;consumer, args&#61;(namespace, event), ) c.start() p.start() c.join() p.join() # output# Before event: []# After event : []

要更新列表&#xff0c;需要再次将其添加到命名空间。

进程池

Pool类可用于管理固定数量 workers 的简单情况。返回值作为列表返回。Pool 参数包括进程数和启动任务进程时要运行的函数(每个子进程调用一次)。

import multiprocessingdef do_calculation(data): return data * 2def start_process(): print(&#39;Starting&#39;, multiprocessing.current_process().name)if __name__ &#61;&#61; &#39;__main__&#39;: inputs &#61; list(range(10)) print(&#39;Input :&#39;, inputs) builtin_outputs &#61; map(do_calculation, inputs) print(&#39;Built-in:&#39;, builtin_outputs) pool_size &#61; multiprocessing.cpu_count() * 2 pool &#61; multiprocessing.Pool( processes&#61;pool_size, initializer&#61;start_process, ) pool_outputs &#61; pool.map(do_calculation, inputs) pool.close() # no more tasks pool.join() # wrap up current tasks print(&#39;Pool :&#39;, pool_outputs) # output# Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]# Built-in: # Starting ForkPoolWorker-3# Starting ForkPoolWorker-4# Starting ForkPoolWorker-5# Starting ForkPoolWorker-6# Starting ForkPoolWorker-1# Starting ForkPoolWorker-7# Starting ForkPoolWorker-2# Starting ForkPoolWorker-8# Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

除了各个任务并行运行外&#xff0c;map()方法的结果在功能上等同于内置map()。由于 Pool 并行处理其输入&#xff0c;close() 和 join()可用于主处理与任务进程进行同步&#xff0c;以确保完全清除。

默认情况下&#xff0c;Pool创建固定数量的工作进程并将 jobs 传递给它们&#xff0c;直到没有其他 jobs 为止。设置 maxtasksperchild参数会告诉 Pool 在完成一些任务后重新启动工作进程&#xff0c;从而防止长时间运行 workers 消耗更多的系统资源。

import multiprocessingdef do_calculation(data): return data * 2def start_process(): print(&#39;Starting&#39;, multiprocessing.current_process().name)if __name__ &#61;&#61; &#39;__main__&#39;: inputs &#61; list(range(10)) print(&#39;Input :&#39;, inputs) builtin_outputs &#61; map(do_calculation, inputs) print(&#39;Built-in:&#39;, builtin_outputs) pool_size &#61; multiprocessing.cpu_count() * 2 pool &#61; multiprocessing.Pool( processes&#61;pool_size, initializer&#61;start_process, maxtasksperchild&#61;2, ) pool_outputs &#61; pool.map(do_calculation, inputs) pool.close() # no more tasks pool.join() # wrap up current tasks print(&#39;Pool :&#39;, pool_outputs) # output# Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]# Built-in: # Starting ForkPoolWorker-1# Starting ForkPoolWorker-2# Starting ForkPoolWorker-4# Starting ForkPoolWorker-5# Starting ForkPoolWorker-6# Starting ForkPoolWorker-3# Starting ForkPoolWorker-7# Starting ForkPoolWorker-8# Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

即使没有更多工作&#xff0c;Pool 也会在完成分配的任务后重新启动 workers。在此输出中&#xff0c;即使只有 10 个任务&#xff0c;也会创建 8 个 workers&#xff0c;并且每个 worker 可以一次完成其中两个任务。

实现 MapReduce

Pool类可以用来创建一个简单的单台服务器的 MapReduce 实现。虽然它没有给出分布式处理的全部好处&#xff0c;但它确实说明了将一些问题分解为可分配的工作单元是多么容易。

在基于 MapReduce 的系统中&#xff0c;输入数据被分解为块以供不同的工作实例处理。使用简单的变换将每个输入数据块 映射到中间状态。然后将中间数据收集在一起并基于键值进行分区&#xff0c;以使所有相关值在一起。最后&#xff0c;分区数据减少到结果。

# multiprocessing_mapreduce.pyimport collectionsimport itertoolsimport multiprocessingclass SimpleMapReduce: def __init__(self, map_func, reduce_func, num_workers&#61;None): """ map_func Function to map inputs to intermediate data. Takes as argument one input value and returns a tuple with the key and a value to be reduced. reduce_func Function to reduce partitioned version of intermediate data to final output. Takes as argument a key as produced by map_func and a sequence of the values associated with that key. num_workers The number of workers to create in the pool. Defaults to the number of CPUs available on the current host. """ self.map_func &#61; map_func self.reduce_func &#61; reduce_func self.pool &#61; multiprocessing.Pool(num_workers) def partition(self, mapped_values): """Organize the mapped values by their key. Returns an unsorted sequence of tuples with a key and a sequence of values. """ partitioned_data &#61; collections.defaultdict(list) for key, value in mapped_values: partitioned_data[key].append(value) return partitioned_data.items() def __call__(self, inputs, chunksize&#61;1): """Process the inputs through the map and reduce functions given. inputs An iterable containing the input data to be processed. chunksize&#61;1 The portion of the input data to hand to each worker. This can be used to tune performance during the mapping phase. """ map_responses &#61; self.pool.map( self.map_func, inputs, chunksize&#61;chunksize, ) partitioned_data &#61; self.partition( itertools.chain(*map_responses) ) reduced_values &#61; self.pool.map( self.reduce_func, partitioned_data, ) return reduced_values

下面的示例脚本使用 SimpleMapReduce 来计算本文的 reStructuredText 源中的“words”&#xff0c;忽略了一些标记。

# multiprocessing_wordcount.py import multiprocessingimport stringfrom multiprocessing_mapreduce import SimpleMapReducedef file_to_words(filename): """Read a file and return a sequence of (word, occurences) values. """ STOP_WORDS &#61; set([ &#39;a&#39;, &#39;an&#39;, &#39;and&#39;, &#39;are&#39;, &#39;as&#39;, &#39;be&#39;, &#39;by&#39;, &#39;for&#39;, &#39;if&#39;, &#39;in&#39;, &#39;is&#39;, &#39;it&#39;, &#39;of&#39;, &#39;or&#39;, &#39;py&#39;, &#39;rst&#39;, &#39;that&#39;, &#39;the&#39;, &#39;to&#39;, &#39;with&#39;, ]) TR &#61; str.maketrans({ p: &#39; &#39; for p in string.punctuation }) print(&#39;{} reading {}&#39;.format( multiprocessing.current_process().name, filename)) output &#61; [] with open(filename, &#39;rt&#39;) as f: for line in f: # Skip comment lines. if line.lstrip().startswith(&#39;..&#39;): continue line &#61; line.translate(TR) # Strip punctuation for word in line.split(): word &#61; word.lower() if word.isalpha() and word not in STOP_WORDS: output.append((word, 1)) return outputdef count_words(item): """Convert the partitioned data for a word to a tuple containing the word and the number of occurences. """ word, occurences &#61; item return (word, sum(occurences))if __name__ &#61;&#61; &#39;__main__&#39;: import operator import glob input_files &#61; glob.glob(&#39;*.rst&#39;) mapper &#61; SimpleMapReduce(file_to_words, count_words) word_counts &#61; mapper(input_files) word_counts.sort(key&#61;operator.itemgetter(1)) word_counts.reverse() print(&#39;TOP 20 WORDS BY FREQUENCY&#39;) top20 &#61; word_counts[:20] longest &#61; max(len(word) for word, count in top20) for word, count in top20: print(&#39;{word:

file_to_words() 函数将每个输入文件转换为包含单词和数字1(表示单个匹配项)的元组序列。通过partition() 使用单词作为键来划分数据&#xff0c;因此得到的结构由一个键和1表示每个单词出现的值序列组成。count_words()在缩小阶段&#xff0c;分区数据被转换为一组元组&#xff0c;其中包含一个单词和该单词的计数。

$ python3 -u multiprocessing_wordcount.pyForkPoolWorker-1 reading basics.rstForkPoolWorker-2 reading communication.rstForkPoolWorker-3 reading index.rstForkPoolWorker-4 reading mapreduce.rstTOP 20 WORDS BY FREQUENCYprocess : 83running : 45multiprocessing : 44worker : 40starting : 37now : 35after : 34processes : 31start : 29header : 27pymotw : 27caption : 27end : 27daemon : 22can : 22exiting : 21forkpoolworker : 21consumer : 20main : 18event : 16

相关文档&#xff1a;

https://pymotw.com/3/multiprocessing/index.html

https://thief.one/2016/11/23/Python-multiprocessing/

http://www.dongwm.com/archives/%E4%BD%BF%E7%94%A8Python%E8%BF%9B%E8%A1%8C%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B-%E8%BF%9B%E7%A8%8B%E7%AF%87/




推荐阅读
  • 本文探讨了在渗透测试中信息收集阶段使用的几种端口扫描技术,包括nmap、masscan、socket、telnet及nc等工具的应用与比较。 ... [详细]
  • 本文将探讨2015年RCTF竞赛中的一道PWN题目——shaxian,重点分析其利用Fastbin和堆溢出的技巧。通过详细解析代码流程和漏洞利用过程,帮助读者理解此类题目的破解方法。 ... [详细]
  • 深入解析 Android IPC 中的 Messenger 机制
    本文详细介绍了 Android 中基于消息传递的进程间通信(IPC)机制——Messenger。通过实例和源码分析,帮助开发者更好地理解和使用这一高效的通信工具。 ... [详细]
  • 深入理解Java多线程并发处理:基础与实践
    本文探讨了Java中的多线程并发处理机制,从基本概念到实际应用,帮助读者全面理解并掌握多线程编程技巧。通过实例解析和理论阐述,确保初学者也能轻松入门。 ... [详细]
  • 本文详细探讨了如何通过分析单个或多个线程在瓶颈情况下的表现,来了解处理器资源的消耗。无论是单进程还是多进程环境,监控关键指标如线程数量、占用时间及调度优先级等,有助于揭示潜在的性能问题。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • Vue 3.0 翻牌数字组件使用指南
    本文详细介绍了如何在 Vue 3.0 中使用翻牌数字组件,包括其基本设置和高级配置,旨在帮助开发者快速掌握并应用这一动态视觉效果。 ... [详细]
  • 近期遇到 M1 Mac Mini 在休眠状态下频繁自动重启的问题,通过日志分析尝试找出可能的原因。 ... [详细]
  • 本文探讨了Python中使用concurrent.futures模块实现进程超时的有效性,并提供了一种更可靠的解决方案。 ... [详细]
  • Python基础教程(一)
    本篇教程将介绍Python中的字符串格式化方法、用户输入处理以及基本的运算符和控制结构。 ... [详细]
  • 本文详细介绍了Grand Central Dispatch (GCD) 的核心概念和使用方法,探讨了任务队列、同步与异步执行以及常见的死锁问题。通过具体示例和代码片段,帮助开发者更好地理解和应用GCD进行多线程开发。 ... [详细]
  • 本文介绍如何在Grafana配置面板时,使用JSONNet获取数组中特定元素的位置,并将其应用于动态服务查询。 ... [详细]
  • 本文介绍了一种根据目标检测结果,从原始XML文件中提取并分析特定类别的方法。通过解析XML文件,筛选出特定类别的图像和标注信息,并保存到新的文件夹中,以便进一步分析和处理。 ... [详细]
  • 本文介绍如何通过SQL查询来统计不同职位类型的员工当前薪资的平均值,并将结果按照平均薪资升序排列。 ... [详细]
  • 如何从python读取sql[mysql基础教程]
    从python读取sql的方法:1、利用python内置的open函数读入sql文件;2、利用第三方库pymysql中的connect函数连接mysql服务器;3、利用第三方库pa ... [详细]
author-avatar
li-yuefang_883
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有