1 引 言本文引用地址:http://www.eepw.com.cn/article/189951.htm
神经网络工具箱扩充了Matlab的设计、应用、显示和仿真神经网络的工具。如今神经网络能够用来解决常规计算机和人难以解决的问题,神经网络已经在各个领域中应用,以实现各种复杂的功能。这些领域包括:模式识别、非线性系统鉴定和系统控制。神经网络工具箱除了提供方便用户设计和管理网络的可视化接口(GUI)外,还提供了大量已经证实的网络设计的支持。标准、开放、可扩张的工具箱设计方便了用户自定义函数和网络的生成。
像生物学神经系统一样,一个神经网络会学习,因此,也就可以被训练去解决问题,识别模式,划分数据和预测事态发展。神经网络的行为由它的各个计算参数的结合方式以及它们的权重来决定。一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。神经网络工具GUI使神经网络变得简单,它使你能够导人大量复杂的数据,并能够很快地产生、初始化、训练、仿真和管理网络。简单的图像表示有助于明确和理解网络的结构。因为神经网络需要复杂的矩阵计算,Matlab提供一个神经框架,帮助快速地使用神经网络和学习它们的行为和应用。
文献[5]讨论了用扩充的神经系统工具的方法在仿真环境里解决现存的问题。这种新方法简化了网络结构,并且也实现对其他软件工具的利用。目前还没有论文公开讨论NNT在同步机制中的应用,而这一部分的研究也是具有现实意义的。
2 Matlab神经网络工具箱
NNT使在Matlab中使用神经网络变得简单。其工具箱中包含了大量函数和网络结构框图(图1是一个简单的神经网络框图,图中独立的符号简化了对网络结构的理解),因此,这里不需要介绍所有的将用到的函数、训练算法等。
2.1 NNT的结构
工具箱是基于网络对象的。网络对象包括关于神经网络的所有信息,例如:网络的层数和结构、层与层之间的连接等。Matlab提供了高等网络层的创建函数,比如:newlin(创建一个线性层),newp(创建一个感知机),newff(创建一个反向传播网络)等。举例说明,这里创建了1个感知机,2个输入向量p1=[0 1],p2=[-2 2],神经元数为1。