热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

matlab求矩阵均值向量,如何求一个矩阵的均值向量

四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关

00352a7d74f4ceebfdccd7d711313088.png

四、线性方程组

考试内容

线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解

考试要求

1.会用克莱姆法则解线性方程组.

2. 掌握非齐次线性方程组有解和无解的判定方法.

3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

4.理解非齐次线性方程组的结构及通解的概念.

5. 掌握用初等行变换求解线性方程组的方法. 五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵

考试要求

1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法.

3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型

考试内容

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩惯性定理 二次型的标准形和规范形正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

考试要求

1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.

2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会甩正交变换和配方法化二次型为标准形.

3.理解正定二次型、正定矩阵的概念,并掌握其判别法. Back 概 率 论 与 数 理 统 计 一、随机事件和概率

考试内容

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性

独立重复事件

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算.

2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法、乘法公式、全概率公式及贝叶斯(Bayes)公式等.

3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布

考试内容

随机变量 随机变量的分布函数及其性质 离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

考试要求

1.理解随机变量的概念;理解分布函数 的概念及性质;会计算与随机变量有关的事件的概率.

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布 及其应用.

3. 理解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布、指数分布及其应用,其中参数为 的指数分布 的密度函数为 5.会求随机变量函数的分布. 三、多维随机变量的分布

考试内容

多维随机变量及其分布函数 二维离散型随机变量概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度 边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布

考试要求

1.理解多维随机变量的分布的概念和基本性质.

2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度.掌握二维随机变量的边缘概率分布和条件分布.

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系.

4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.

5.会根据两个随机变量的联合分布求其函数的分布;会根据多个相互独立随机变量的联合分布求其函数的分布. 四、随机变量的数字特征

考试内容

随机变量的[wiki]数学[/wiki]期望(均值)、方差、标准差及其性质随机变量函数的数学期望 切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.

2.会随机变量函数的数学期望.

3.掌握切比雪夫不等式. 五、大数定律和中心极限定理

考试内容

切比雪夫(Chebyhev)大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理

考试要求

1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率. 六、数理统计的基本概念

考试内容

总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布

考试要求

1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:

.

2.了解产生 变量、 变量和 变量的典型模型;理解标准正态分布、 分布、分布和 分布的分位数,会查相应的数值表.

3.掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布.

4.理解经验分布函数的概念和性质,会根据样本值求经验分布函数. 七、参数估计

考试内容

点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体均值的区间估计 单个正态总体方差和标准差的区间估计两个正态总体的均值差和方差比的区间估计

考试要求

1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验正估计量的无偏性.

2.掌握矩估计法(一阶、二阶矩)和最大似然估计法

3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数值特征的置信区间的求法.

4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验

考试内容

显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验

考试要求

1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验.

2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率.

3.掌握单个及两个正态总体的均值和方差的假设检验. 试 卷 结 构 (-)总分 试卷满分为150分

(二)内容比例 微积分约56% 线性代数约22% 概率论与数理统计约22%

(三)题型比例 填空题与选择题约37% 解答题(包括证明题)约63%

注:考试时间为 180分钟

参考资料:http://123.103.29.54/archiver/tid-2797.html

◆◆

评论读取中....

请登录后再发表评论!

◆◆

修改失败,请稍后尝试



推荐阅读
  • 使用 jQuery 实现页面加载进度条
    页面加载进度条是提升用户体验的重要工具,通过在页面头部显示一个加载状态,并在页面完全加载后隐藏,可以有效减少用户的等待焦虑。本文将详细介绍如何使用 jQuery 实现这一功能。 ... [详细]
  • Ubuntu 环境下配置 LAMP 服务器
    本文详细介绍了如何在 Ubuntu 系统上安装和配置 LAMP(Linux、Apache、MySQL 和 PHP)服务器。包括 Apache 的安装、PHP 的配置以及 MySQL 数据库的设置,确保读者能够顺利搭建完整的 Web 开发环境。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • WCF类型共享的最佳实践
    在使用WCF服务时,经常会遇到同一个实体类型在不同服务中被生成为不同版本的问题。本文将介绍几种有效的类型共享方法,以解决这一常见问题。 ... [详细]
  • 本文介绍了多种开源数据库及其核心数据结构和算法,包括MySQL的B+树、MVCC和WAL,MongoDB的tokuDB和cola,boltDB的追加仅树和mmap,levelDB的LSM树,以及内存缓存中的一致性哈希。 ... [详细]
  • 最近在博客园上发现了一款ViewState解码工具,这是一款非常实用的工具,可以帮助开发者检查ViewState是否正确保存。然而,这也意味着其他人可以通过该工具查看ViewState中的数据,因此隐藏ViewState变得尤为重要。 ... [详细]
  • 探讨密码安全的重要性
    近期,多家知名网站如CSDN、人人网、多玩、开心网等的数据库相继被泄露,其中大量用户的账户密码因明文存储而暴露无遗。本文将探讨黑客获取密码的常见手段,网站如何安全存储用户信息,以及用户应如何保护自己的密码。 ... [详细]
  • 本文通过一个简单的示例,展示如何使用ASP技术生成HTML文件。示例包括两个页面:首页index.htm和处理页面send.asp。 ... [详细]
  • LeetCode 125: 验证回文字符串 (Valid Palindrome)
    本题要求检查给定的字符串是否为回文。在判断过程中,仅考虑字母和数字字符,并且忽略大小写。例如,"A man, a plan, a canal: Panama" 是一个回文。 ... [详细]
  • 本文详细介绍了在Mac平台上安装和配置MySQL的步骤,包括下载安装包、卸载MySQL以及解决命令行中找不到mysql命令的问题。 ... [详细]
  • 本文详细探讨了Spring框架中遇到的NoSuchBeanDefinitionException异常,具体涉及com.thinkplatform.dao.UserLogDao Bean未定义的问题,并提供了相应的解决方案。 ... [详细]
  • 本文介绍了编程语言的基本分类,包括机器语言、汇编语言和高级语言的特点及其优缺点。随后详细讲解了Python解释器的安装与配置方法,并探讨了Python变量的定义、使用及内存管理机制。 ... [详细]
  • 经过三轮严格的面试,终于顺利加入沪江网。虽然在团队开发方面还有待提升,但充满信心和期待,希望能在这里不断学习和成长。 ... [详细]
  • 本文介绍 DB2 中的基本概念,重点解释事务单元(UOW)和事务的概念。事务单元是指作为单个原子操作执行的一个或多个 SQL 查询。 ... [详细]
  • 优化虎牙直播体验的插件
    近期在观看虎牙直播时,发现广告和一些低质量直播间频繁出现,严重影响了观看体验。为此,我开发了一款插件,帮助用户屏蔽这些不想要的内容。以下是插件的介绍和使用方法。 ... [详细]
author-avatar
形同陌路2502906543
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有