先贴上作业的答案
linearRegCostFunction.m
function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % cost of using theta as the parameter for linear regression to fit the % data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost and gradient of regularized linear % regression for a particular choice of theta. % % You should set J to the cost and grad to the gradient. % J=(1/(2*m))*sum((X*theta-y).^2)+(lambda/(2*m))*sum(theta(2:end,:).^2); n=size(X,2); for i=1:n A(i,1)=(1/m)*sum((X*theta-y).*X(:,i)); end theta(1,:)=0; B=(lambda/m)*theta; grad=A+B; % ========================================================================= grad = grad(:); end
function [error_train, error_val] = ... learningCurve(X, y, Xval, yval, lambda) %LEARNINGCURVE Generates the train and cross validation set errors needed %to plot a learning curve % [error_train, error_val] = ... % LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and % cross validation set errors for a learning curve. In particular, % it returns two vectors of the same length - error_train and % error_val. Then, error_train(i) contains the training error for % i examples (and similarly for error_val(i)). % % In this function, you will compute the train and test errors for % dataset sizes from 1 up to m. In practice, when working with larger % datasets, you might want to do this in larger intervals. % % Number of training examples m = size(X, 1); % You need to return these values correctly error_train = zeros(m, 1); error_val = zeros(m, 1); % ====================== YOUR CODE HERE ====================== % Instructions: Fill in this function to return training errors in % error_train and the cross validation errors in error_val. % i.e., error_train(i) and % error_val(i) should give you the errors % obtained after training on i examples. % % Note: You should evaluate the training error on the first i training % examples (i.e., X(1:i, :) and y(1:i)). % % For the cross-validation error, you should instead evaluate on % the _entire_ cross validation set (Xval and yval). % % Note: If you are using your cost function (linearRegCostFunction) % to compute the training and cross validation error, you should % call the function with the lambda argument set to 0. % Do note that you will still need to use lambda when running % the training to obtain the theta parameters. % % Hint: You can loop over the examples with the following: % % for i = 1:m % % Compute train/cross validation errors using training examples % % X(1:i, :) and y(1:i), storing the result in % % error_train(i) and error_val(i) % .... % % end % % ---------------------- Sample Solution ---------------------- for i=1:m %利用X(1:i,:),y(1:i),trainLinearReg(),来训练参数theta theta=trainLinearReg(X(1:i,:),y(1:i), lambda); %You should evaluate the training error on the first i training examples (i.e., X(1:i, :) and y(1:i)). %训练误差计算只用X(1:i,:), y(1:i) [error_train(i),grad]=linearRegCostFunction(X(1:i,:), y(1:i), theta, 0); %交叉验证用上所有的验证集,即Xval, yval %For the cross-validation error, you should instead evaluate on the _entire_ cross validation set (Xval and yval). [error_val(i), grad]=linearRegCostFunction(Xval, yval, theta, 0); end % ------------------------------------------------------------- % ========================================================================= end
function [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval) %VALIDATIONCURVE Generate the train and validation errors needed to %plot a validation curve that we can use to select lambda % [lambda_vec, error_train, error_val] = ... % VALIDATIONCURVE(X, y, Xval, yval) returns the train % and validation errors (in error_train, error_val) % for different values of lambda. You are given the training set (X, % y) and validation set (Xval, yval). % % Selected values of lambda (you should not change this) lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]'; % You need to return these variables correctly. error_train = zeros(length(lambda_vec), 1); error_val = zeros(length(lambda_vec), 1); % ====================== YOUR CODE HERE ====================== % Instructions: Fill in this function to return training errors in % error_train and the validation errors in error_val. The % vector lambda_vec contains the different lambda parameters % to use for each calculation of the errors, i.e, % error_train(i), and error_val(i) should give % you the errors obtained after training with % lambda = lambda_vec(i) % % Note: You can loop over lambda_vec with the following: % % for i = 1:length(lambda_vec) % lambda = lambda_vec(i); % % Compute train / val errors when training linear % % regression with regularization parameter lambda % % You should store the result in error_train(i) % % and error_val(i) % .... % % end % % for i=1:length(lambda_vec) lambda=lambda_vec(i); theta=trainLinearReg(X,y, lambda); [error_train(i),grad]=linearRegCostFunction(X, y, theta, 0); [error_val(i), grad]=linearRegCostFunction(Xval, yval, theta, 0); end % ========================================================================= end
%% Machine Learning Online Class % Exercise 5 | Regularized Linear Regression and Bias-Variance % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % linearRegCostFunction.m % learningCurve.m % validationCurve.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% =========== Part 1: Loading and Visualizing Data ============= % We start the exercise by first loading and visualizing the dataset. % The following code will load the dataset into your environment and plot % the data. % % Load Training Data fprintf('Loading and Visualizing Data ...\n') % Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in your environment load ('ex5data1.mat'); % m = Number of examples m = size(X, 1); % Plot training data plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 2: Regularized Linear Regression Cost ============= % You should now implement the cost function for regularized linear % regression. % theta = [1 ; 1]; J = linearRegCostFunction([ones(m, 1) X], y, theta, 1); fprintf(['Cost at theta = [1 ; 1]: %f '... '\n(this value should be about 303.993192)\n'], J); fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 3: Regularized Linear Regression Gradient ============= % You should now implement the gradient for regularized linear % regression. % theta = [1 ; 1]; [J, grad] = linearRegCostFunction([ones(m, 1) X], y, theta, 1); fprintf(['Gradient at theta = [1 ; 1]: [%f; %f] '... '\n(this value should be about [-15.303016; 598.250744])\n'], ... grad(1), grad(2)); fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 4: Train Linear Regression ============= % Once you have implemented the cost and gradient correctly, the % trainLinearReg function will use your cost function to train % regularized linear regression. % % Write Up Note: The data is non-linear, so this will not give a great % fit. % % Train linear regression with lambda = 0 lambda = 0; [theta] = trainLinearReg([ones(m, 1) X], y, lambda); % Plot fit over the data plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); hold on; plot(X, [ones(m, 1) X]*theta, '--', 'LineWidth', 2) hold off; fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 5: Learning Curve for Linear Regression ============= % Next, you should implement the learningCurve function. % % Write Up Note: Since the model is underfitting the data, we expect to % see a graph with "high bias" -- slide 8 in ML-advice.pdf % lambda = 0; [error_train, error_val] = ... learningCurve([ones(m, 1) X], y, ... [ones(size(Xval, 1), 1) Xval], yval, ... lambda); plot(1:m, error_train, 1:m, error_val); title('Learning curve for linear regression') legend('Train', 'Cross Validation') xlabel('Number of training examples') ylabel('Error') axis([0 13 0 150]) fprintf('# Training Examples\tTrain Error\tCross Validation Error\n'); for i = 1:m fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i)); end fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 6: Feature Mapping for Polynomial Regression ============= % One solution to this is to use polynomial regression. You should now % complete polyFeatures to map each example into its powers % p = 8; % Map X onto Polynomial Features and Normalize X_poly = polyFeatures(X, p); [X_poly, mu, sigma] = featureNormalize(X_poly); % Normalize X_poly = [ones(m, 1), X_poly]; % Add Ones % Map X_poly_test and normalize (using mu and sigma) X_poly_test = polyFeatures(Xtest, p); X_poly_test = bsxfun(@minus, X_poly_test, mu); X_poly_test = bsxfun(@rdivide, X_poly_test, sigma); X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test]; % Add Ones % Map X_poly_val and normalize (using mu and sigma) X_poly_val = polyFeatures(Xval, p); X_poly_val = bsxfun(@minus, X_poly_val, mu); X_poly_val = bsxfun(@rdivide, X_poly_val, sigma); X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val]; % Add Ones fprintf('Normalized Training Example 1:\n'); fprintf(' %f \n', X_poly(1, :)); fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% =========== Part 7: Learning Curve for Polynomial Regression ============= % Now, you will get to experiment with polynomial regression with multiple % values of lambda. The code below runs polynomial regression with % lambda = 0. You should try running the code with different values of % lambda to see how the fit and learning curve change. % lambda = 1; [theta] = trainLinearReg(X_poly, y, lambda); %[J, grad] = linearRegCostFunction(X_poly_val, ytest, theta, lambda) % Plot training data and fit figure(1); plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); plotFit(min(X), max(X), mu, sigma, theta, p); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda)); figure(2); [error_train, error_val] = ... learningCurve(X_poly, y, X_poly_val, yval, lambda); plot(1:m, error_train, 1:m, error_val); title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda)); xlabel('Number of training examples') ylabel('Error') axis([0 13 0 100]) legend('Train', 'Cross Validation') fprintf('Polynomial Regression (lambda = %f)\n\n', lambda); fprintf('# Training Examples\tTrain Error\tCross Validation Error\n'); for i = 1:m fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i)); end fprintf('Program paused. Press enter to continue.\n'); pause; %% =========== Part 8: Validation for Selecting Lambda ============= % You will now implement validationCurve to test various values of % lambda on a validation set. You will then use this to select the % "best" lambda value. % [lambda_vec, error_train, error_val] = ... validationCurve(X_poly, y, X_poly_val, yval); close all; plot(lambda_vec, error_train, lambda_vec, error_val); legend('Train', 'Cross Validation'); xlabel('lambda'); ylabel('Error'); fprintf('lambda\t\tTrain Error\tValidation Error\n'); for i = 1:length(lambda_vec) fprintf(' %f\t%f\t%f\n', ... lambda_vec(i), error_train(i), error_val(i)); end fprintf('Program paused. Press enter to continue.\n'); pause; %%--------------------------------------------------------------------------- %%Optional (ungraded) exercise: Computing test set lambda=3; theta=trainLinearReg(X_poly,y, lambda); [error_test,grad]=linearRegCostFunction(X_poly_test, ytest, theta, 0); fprintf(' %f\n',error_test); %%------------------------------------------------------------------------- %%Optional (ungraded) exercise: Plotting learning curves with randomly selected examples % m=size(X_poly,1); % X_poly_y=[X_poly,y]; % X_poly_val_y=[X_poly_val,yval]; % lambda=0.01; % error_train = zeros(m, 1); % error_val = zeros(m, 1); % for i=1:m % error_train_sum=0; % error_val_sum =0; % for k=1:20 %50次迭代 % rand_seq=round(rand(1,i)*(m-1))+1;%生成i个随机序列 0~m % rand_X_poly_y=X_poly_y(rand_seq,:); % rand_X_poly_val_y=X_poly_val_y(rand_seq,:); % X=rand_X_poly_y(:,1:end-1); % y=rand_X_poly_y(:,end); % Xval=rand_X_poly_val_y(:,1:end-1); % yval=rand_X_poly_val_y(:,end); % theta=trainLinearReg(X,y,lambda); % [error_train_val,grad]=linearRegCostFunction(X, y, theta, 0); % [error_val_val, grad]=linearRegCostFunction(Xval, yval, theta, 0); % error_train_sum=error_train_sum+error_train_val; % error_val_sum=error_val_sum+error_val_val; % end % error_train(i)=error_train_sum/20; % error_val(i)=error_val_sum/20; % end % plot(1:m, error_train, 1:m, error_val); % title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda)); % xlabel('Number of training examples') % ylabel('Error') % axis([0 13 0 100]) % legend('Train', 'Cross Validation') % fprintf('Polynomial Regression (lambda = %f)\n\n', lambda); % fprintf('# Training Examples\tTrain Error\tCross Validation Error\n'); %%-------------------------------------------------------------------------
一、优化方案
当建模之后发现使用新的数据进行测试的时候,预测结果非常不理想,这个时候,可以尝试下面的方法进行重新建模:
1. 使用更多的训练数据
2. 尝试使用较少的属性
3. 或者尝试更多的属性
4. 尝试使用属性值的多项式形式
5. 增大常数项参数
6. 减小常数项参数
一般情况下,可以将数据集分为:训练集和测试级 7:3的比例。
利用训练集数据去训练出参数,然后用测试集去测试性能。
过拟合:简单的理解就是参数太多,训练集太少,过拟合的结果是训练误差会非常小,因为我们的参数很多,可以很好的拟合几乎所有的训练数据,但是,过拟合情况下,模型的泛化能力就很差,会导致训练误差比较大。
下面的就是过拟合的一个典型图像:
其实:一般情况下,数据集应该分为训练集,交叉验证集,测试集,因为,我们能会假设有好几种可能的模型,然后用数据集分别去训练这几个模型,然后利用交叉验证集去选择一个比较好的模型,最后用测试集去测试选出最优模型的性能。
如果,我们只假设了一个模型,那么就没有选择模型这个过程,那就把数据集分为训练集,测试集就可以了,训练集训练模型,测试集测试模型。
关于训练误差,代价误差,交叉误差的说明。
注:我们在训练模型的过程中,要使用代价函数,我们使用的代价函数必须是上面这个式子,如果,你加入了正则化的话,一定要加入正则項。
但是,我们在模型训练完,计算训练误差,交叉验证误差,测试误差的时候,即使有正则化参数,也不必加进去,只需按照上面的式子计算各种误差即可,很容易理解,就是比较训练结果与实际结果的差异。
现在开始讲述:偏差(Bias)和方差(variance)的概念
解释:偏差就是欠拟合,简单来讲就是参数太少,数据太多,不足以拟合参数,欠拟合情况下,训练误差会比较大,测试误差也会比较大。
方差就是过拟合,简单来说就是参数太多,训练数据太少,参数过分拟合数据,导致泛化能力非常差,过拟合情况下,训练误差比较小,但是因为模型没有泛化能力,所以,测试误差会比较大。
解释: 左图就是参数太少,不足以拟合训练数据的情况-欠拟合。
右图就是参数太多,过分拟合训练数据的情况 -过拟合
中图刚好合适,即比较好的拟合数据,又具有较好的泛化能力。
解释:继续解释上面的那个多项式拟合,d代表拟合的参数的个数,我们关注一下训练误差曲线Jtrain(θ)和交叉验证曲线Jcv(θ),随着
d的增大,我们用更多的多項式,参数来拟合训练数据,刚开始d比较小时,是欠拟合,训练误差会比较大,当d增大时,就会拟合得越来越好,所以,我们看到训练误差曲线是呈下降的趋势。
对于交叉验证曲线,d比较小是,欠拟合状态,模型拟合效果很差,所以,交叉验证误差会比较大,当d增大时,交叉验证误差会先逐渐减少,但是,当d过分大时,就进入了过拟合状态,模型的泛化能力也会比较差,所以,交叉验证误差又会逐渐增大。
所以,交叉验证误差的谷点,最小值就是我们该选择的d值。
接下来是关于学习曲线的绘制,只有绘制学习曲线,能帮助我们选择参数和判断算法现在是处于什么状态,高偏差(欠拟合),高方差(过拟合),或者两者都有。
解释:正则化参数的大小是来调节过拟合,欠拟合状态的,正则化参数是抑制参数大小的因子,当正则化参数比较大时,模型的参数值会变得比较小,极端情况下,很多参数会变零。就导致了欠拟合状态。
当正则化参数比较小时,其抑制参数大小的能力就几乎等于没有,所以,如果本身模型的参数比较多,那么就容易进入过拟合状态。
左图对应的是large lambda 欠拟合
右图对应的是small lambda 过拟合
解释:此学习曲线,训练误差和交叉验证误差关于正则化参数的学习曲线。
当lambda比较小是,是过拟合状态,所以,训练误差比较小,随着lambda的增大,进入了欠拟合状态,训练误差增长,所以
Jtrain(θ)是上升的曲线。
当lambda比较小时,过拟合,所以泛化能力差,交叉验证误差会比较大,当lambda比较大时,欠拟合,交叉验证误差也会比较大,所以交叉验证误差曲线Jcv(θ)是抛物线型的曲线(理想情况下)。
所以,合适的lambda还是对应Jcv(θ)的谷点。
接下来要讲述的是训练误差关于训练样本规模的学习曲线
先讲结论,对应高偏差(欠拟合)情况下,增加样本的规模对于提高模型的性能其实一点帮助都没有,因为模型本身拟合得不好,增加数据集没用,本来就处于参数过多,样本过少的情况,增加训练样本,只会增大欠拟合的程度。
当处在高方差(过拟合)情况下,增加样本的规模对于提高模型的性能是有帮助的,因为过拟合是处在参数过多,样本过少的情况下,所以,增加样本的数目对于改善过拟合情况是非常有帮助的。
解释:对于high bias情况下,从error-m图中可以看出,随着训练样本m的增大,交叉验证误差很快就达到水平,下降极其缓慢,
所以,增加样本的规模也无济于事。总结,对于high bias的情况,Jtrain(θ)和Jcv(θ)都会比较大,且比较靠近。
解释:对于高方差的情况下,Jtrain(θ)是缓慢增长的,且数值比较小。而Jcv(θ)会比较大,随着样本规模的增大,持续下降,说明一点,在高方差情况下,Jtrain(θ)和Jcv(θ)还是有一段距离(gap)的。所以增大样本的规模,会减少Jcv(θ)。
当我们画出了曲线,诊断出高方差还是高偏差的问题时,那么就要对症下药了。下面提供,对待不同问题该使用的方法:
1、使用更多的训练样本 -解决过拟合问题
2、使用更少的特征 -解决过拟合问题
3、使用更多的特征 -解决欠拟合问题
4、增加使用多项式 -解决欠拟合问题
5、减小正则参数lambda -解决欠拟合问题
6、增大正则参数lambda -解决过拟合问题
接下来就是关于神经网络的学习曲线
解释:神经网络除了可以画出 代价函数-样本规模 代价函数-正则参数 的学习曲线,还可以画出 代价函数-隐层结点数 代价函数-层数的学习曲线。
神经网络也要使用正则参数去调节过拟合问题,如果神经网络的层数过多,隐层结点数过多,会导致过拟合,实际上会倾向于使用比较大型的神经网络,然后用正则参数lambda来调节过拟合。