热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析Linux内核中的进程上下文切换机制

在现代操作系统中,进程作为核心概念之一,负责管理和分配系统资源,如CPU和内存。深入了解Linux内核中的进程上下文切换机制,需要首先明确进程与程序的区别。进程是一个动态的执行流,而程序则是静态的数据和指令集合。进程上下文切换涉及保存当前进程的状态信息,并加载下一个进程的状态,以实现多任务处理。这一过程不仅影响系统的性能,还关系到资源的有效利用。通过分析Linux内核中的具体实现,可以更好地理解其背后的原理和技术细节。

 进程是现代操作系统的核心概念之一,用于分配系统(CPU,内存)资源的使用。 了解linux进程及进程切换的知识,首先要理解进程与程序的区别,进程是执行流,是动态概念;程序是数据与指令序列的集合,是静态概念。进程作为动态的 执行流,可以用execv系统调用自由选择一个程序(只要有权限)来执行的,理解这一点很重要。在阅读本书的第三章《进程》中,有两个地方比较难于理解 的。

 

1 switch_to宏的last参数

     书中讨论switch_to宏(第110页)时,提到,该宏有3个参数:prev,next和last。前两个分别是当前进程描述符地址和待切换的进程 描述符的地址,相信大家对这两个参数都不会有疑问,prev就是从current得到的,而next则是schedule()函数在根据调度算法从进程等 待队列中挑选的。关键是第三个last参数,为什么需要这么一个参数呢?书中的描述比较难理解。它的意思是说,A切换到B 时,prev=A,next=B, 经过一定时间后,A被重新调度到CPU上执行时,A需要知道从哪个进程切换过来的,需要从last参数得到。实际上我们只需要关注A->B这一个过 程就可以理解last参数的使用了。下面我们用图片记录每个步骤:

技术分享图片

(1) 在进程切换之前,A是当前进程,esp寄存器指向A的内核栈,prev,next这两个局部变量保存在栈中,也就是在A的内核栈中。那么B的内核栈有没有 这两个参数呢?当然也有,因为B既然是在等待队列中,很可能B也经历过被其他进程切换出去这一个过程,在那个过程中,B的内核栈同样保存了这两个变量(如 果B是新创建的进程,可以在创建时,或在schedule函数中将两个值压入内核栈),但是这两个值肯定跟A中的prev=A,next=B不同,因为那 个过程中,B是被切换的,因此,这时,B的内核栈中应该是prev=B.

     为了在切换到B进程执行时,prev参数是正确的,就需要借助于第三个参数last 。在schedule函数中(它挑选的B,当然也知道B进程描述符的地址),它从B的进程描述符中得到B的内核栈的地址(书中是thread_info参 数,3.2.54版本代码中改成了stack参数,原理是一样的),从而得到B的prev参数的地址,作为第三个参数传给switch_to宏。 switch_to宏还将A的进程描述符地址加载到EAX寄存器中,而在进程切换过程中,EAX寄存器内容是不会改变的。

(2) 执行进程切换,主要是内核栈的切换,因为内核实现中,将thread_info结构与内核栈放在一起,esp改变了,current参数得到的当前进程描 述符地址也跟着改变。这时,当前进程变成了B进程,并在B的内核栈上工作。注意,这时B内核栈的prev参数还是不正确的,它指向的依然是B。

(3) 将EAX寄存器内容复制到last指向的内存,即B内核栈的prev参数所在的地址。这样,B内核栈上的prev参数就指向了正确的A进程描述符的地址。

 

2 进程切换过程中进程栈

     书中对进程切换的描述中,对进程的栈的描述是零散的,很容易让人犯糊途。栈是进程中的重要数据结构,在函数调用中起到核心作用,关于栈的详细描述可以参阅《深入理解计算机系统》。下面描述进程切换过程中,进程的栈的变迁。

     linux的进程有两种栈,用户栈和内核栈,它们在不同的内存区域,用户栈在用户态中使用,在用户地址空间分配(0~3G),内核栈在内核态中使用,在 内核地址空间分配(3G~4G)。用户栈主要用于函数调用和存储局部变量,内核栈除此之外还要保存进程切换额外的信息,如通用寄存器等。不管是用户栈还是 内核栈,CPU都是用ESP寄存器保存栈顶地址,因此早在进程切换前,进程进入内核态后,用户栈就需要被切换出去,整个切换过程,都是在内核栈上工作,因 而用户栈与进程切换无关。另一方面,内核的实现中,将thread_info结构与内核栈放在一起,内核栈改变了,current参数得到的当前进程描述 符地址也跟着改变,因此进程切换,就是由内核栈切换来完成的。整个完整的进程切换可以分为三个部分,以下假设从进程A切换到进程B:

(1)  A的用户态-->A的内核态

     这一过程是由中断,异常或系统调用实现的,书中的后面章节会有介绍,以后再详谈。这里只讨论几个要点,每次从用户态切换到内核态,内核栈都会被清 空,ESP直接指向内核栈的栈底,而用户栈的信息则会保存到内核栈中。清空内核栈的设计估计是考虑到经过了用户态的操作后,以前内核栈的调用信息没有用处 了,没有必要再保存,毕竟内核栈只分配了8K或4K的空间。那么,切换到内核态之前,内核怎么知道进程的内核栈地址呢,进程描述符虽然保存有内核栈的地址 (stack变量),但是进程描述符位于动态内态中,从内存读取的效率太低了。实现上,它是从TSS中获取的。

     书中“任务状态段”一节(第108页)对TSS进行比较详细的描述,每个CPU都有一个TSS,CPU可以快速访问它。TSS的一个最重要的功能就是在 用户态转为内核态时供CPU读取内核栈地址,即是init_tss[cpu]->sp0字段(3.2.54版本的代码),实际上,它存储的是栈底地 址,因此一加载到ESP中,就同时清空了内核栈。

(2) A的内核态->B的内核态

这一阶段实现的是进程间的内核栈切换,同时也实现进程切换。与此过程关系最密切的 是task_struct的thread变量,thread变量的类型是thread_struct,可称为线程描述符,用于保存进程切换的硬件上下文 (书中第109页)。书中的switch_to和__switch_to函数详细描述了进程切换过程中的每一个步骤,与内核栈相关的有:


  • 保存A的内核栈栈顶地址,即ESP寄存器的内容到A_task->thread->sp。(switch_to的第3步,变量名根据3.2.54版本中的代码)

  • 将B_task->thread->sp内容加载到ESP。(switch_to的第4步,这步完成了内核栈的切换)

  • 将B_task->thread->sp0加载到 init_tss[cpu]->sp0字段(__switch_to的第3步),这一步与(1)的描述对应,以后B在运行期间,用户态切换到内核态 时,ESP寄存器总是从init_tss[cpu]->sp0字段获取内核栈的地址,这一操作同时清空了内核栈内容。(thread_struct 结构有sp0,sp1变量,sp0保存内核栈栈底地址,sp保存栈顶地址)。

(3)B的内核态->B用户态

      执行与(1)相反的过程,从内核栈中取出(1)中保存的用户栈信息,装载相应寄存器,切换到用户栈,内核栈信息不必保存,因为(2)中已保存了栈底地址, 下次进入内核栈时直接将其加载到ESP寄存器中即可(将栈底地址作为栈顶使用)。这一过程书中后面的章节同样会有详细描述。


推荐阅读
  • 微软推出Windows Terminal Preview v0.10
    微软近期发布了Windows Terminal Preview v0.10,用户可以在微软商店或GitHub上获取这一更新。该版本在2月份发布的v0.9基础上,新增了鼠标输入和复制Pane等功能。 ... [详细]
  • 本文详细介绍了如何利用Duilib界面库开发窗体动画效果,包括基本思路和技术细节。这些方法不仅适用于Duilib,还可以扩展到其他类似的界面开发工具。 ... [详细]
  • CentOS 7 中 iptables 过滤表实例与 NAT 表应用详解
    在 CentOS 7 系统中,iptables 的过滤表和 NAT 表具有重要的应用价值。本文通过具体实例详细介绍了如何配置 iptables 的过滤表,包括编写脚本文件 `/usr/local/sbin/iptables.sh`,并使用 `iptables -F` 清空现有规则。此外,还深入探讨了 NAT 表的配置方法,帮助读者更好地理解和应用这些网络防火墙技术。 ... [详细]
  • 本文详细介绍了如何解决DNS服务器配置转发无法解析的问题,包括编辑主配置文件和重启域名服务的具体步骤。 ... [详细]
  • 数字资产量化交易通过大数据分析,以客观的方式制定交易决策,有效减少人为的主观判断和情绪影响。本文介绍了几种常见的数字资产量化交易策略,包括搬砖套利和趋势交易,并探讨了量化交易软件的开发前景。 ... [详细]
  • 解决Win10下MySQL连接问题:Navicat 2003无法连接到本地MySQL服务器(10061)
    本文介绍如何在Windows 10环境下解决Navicat 2003无法连接到本地MySQL服务器的问题,包括启动MySQL服务和检查配置文件的方法。 ... [详细]
  • Spark中使用map或flatMap将DataSet[A]转换为DataSet[B]时Schema变为Binary的问题及解决方案
    本文探讨了在使用Spark的map或flatMap算子将一个数据集转换为另一个数据集时,遇到的Schema变为Binary的问题,并提供了详细的解决方案。 ... [详细]
  • 第二十五天接口、多态
    1.java是面向对象的语言。设计模式:接口接口类是从java里衍生出来的,不是python原生支持的主要用于继承里多继承抽象类是python原生支持的主要用于继承里的单继承但是接 ... [详细]
  • 解决Parallels Desktop错误15265的方法
    本文详细介绍了在使用Parallels Desktop时遇到错误15265的多种解决方案,包括检查网络连接、关闭代理服务器和修改主机文件等步骤。 ... [详细]
  • 解决 Windows Server 2016 网络连接问题
    本文详细介绍了如何解决 Windows Server 2016 在使用无线网络 (WLAN) 和有线网络 (以太网) 时遇到的连接问题。包括添加必要的功能和安装正确的驱动程序。 ... [详细]
  • 使用Jsoup解析并遍历HTML文档时,该库能够高效地生成一个清晰、规范的解析树,即使源HTML文档存在格式问题。Jsoup具备强大的容错能力,能够处理多种异常情况,如未闭合的标签等,确保解析结果的准确性和完整性。 ... [详细]
  • 在使用Eclipse进行调试时,如果遇到未解析的断点(unresolved breakpoint)并显示“未加载符号表,请使用‘file’命令加载目标文件以进行调试”的错误提示,这通常是因为调试器未能正确加载符号表。解决此问题的方法是通过GDB的`file`命令手动加载目标文件,以便调试器能够识别和解析断点。具体操作为在GDB命令行中输入 `(gdb) file `。这一步骤确保了调试环境能够正确访问和解析程序中的符号信息,从而实现有效的调试。 ... [详细]
  • 在 LeetCode 的“有效回文串 II”问题中,给定一个非空字符串 `s`,允许删除最多一个字符。本篇深入解析了如何判断删除一个字符后,字符串是否能成为回文串,并提出了高效的优化算法。通过详细的分析和代码实现,本文提供了多种解决方案,帮助读者更好地理解和应用这一算法。 ... [详细]
  • 系统数据实体验证异常:多个实体验证失败的错误处理与分析
    在使用MVC和EF框架进行数据保存时,遇到了 `System.Data.Entity.Validation.DbEntityValidationException` 错误,表明存在一个或多个实体验证失败的情况。本文详细分析了该错误的成因,并提出了有效的处理方法,包括检查实体属性的约束条件、调试日志的使用以及优化数据验证逻辑,以确保数据的一致性和完整性。 ... [详细]
  • MySQL的查询执行流程涉及多个关键组件,包括连接器、查询缓存、分析器和优化器。在服务层,连接器负责建立与客户端的连接,查询缓存用于存储和检索常用查询结果,以提高性能。分析器则解析SQL语句,生成语法树,而优化器负责选择最优的查询执行计划。这一流程确保了MySQL能够高效地处理各种复杂的查询请求。 ... [详细]
author-avatar
丨丶皓月_261
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有