热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

linux镜像loadi_浅谈cpu.idle和cpu.load

最近在配合运维进行系统压测,进行系统评估的时候cpu.idle和cpu.load是两个主要参考指标。在Linux系统中,通过top命令可以查看cpu.i

最近在配合运维进行系统压测,进行系统评估的时候cpu.idle和cpu.load是两个主要参考指标。

在Linux系统中,通过top命令可以查看cpu.idle和cpu.load。

261395110c8992ecbcb9ff840012c456.png

在说明这两个指标之前,必须对系统运转有一个整体的认识。

在Linux内核中,每个进程都会被分配一个固定的时间片(默认为10ms)。在这10ms中,该进程享有cpu的所有权。如果该进程用完了10ms,或者有其他优先级高的进程发出请求,系统会触发一个中断,内核重新接管cpu,内核分配cpu给其他进程。10ms的分片让用户,也就是我们觉得我们的系统运转非常流畅,尽管我们可能同时开了很多的应用。

cpu.idle

cpu.idle指的是CPU处于空闲状态时间比例,从时间的角度衡量CPU的空闲程度。

CPU利用率主要分为用户态,系统态和空闲态,分别表示CPU处于用户态执行的时间,系统内核执行的时间,和空闲系统进程执行的时间,三者之和就是CPU的总时间。

当没有用户进程、系统进程等需要执行的时候,CPU就执行系统缺省的空闲进程。cpu.idle就是指空闲进程占用时间的比例,即CPU执行空闲的时间 / CPU总的执行时间。cpu.idle是基于/proc/stat计算出来的。

cpu.idle过低排查方式

  1. top 或者 jps 或者 ps -ef | grep java,假定我们找到的是java 进程 PID=9527
  2. 使用命令:top -H -p 9527,找到java进程中的线程情况
  3. 找到占用cpu较高的排名靠前的几个线程 PID 假如找到的耗CPU较高的线程 PID=95271
  4. 查看该线程的堆栈信息,使用命令:jstack -l 95271 或者 jstack -F 95271
  5. 分析堆栈的信息,进一步进行排查代码逻辑

cpu.load

cpu.load被定义为在特定时间间隔内运行队列中(在CPU上运行或者等待运行多少进程)的平均进程数。如果一个进程满足以下条件则其就会位于运行队列中:

  • 它没有在等待I/O操作的结果
  • 它没有主动进入等待状态(也就是没有调用’wait’)
  • 没有被停止(例如:等待终止)

Linux load averages 可以衡量任务对系统的需求,并且它可能大于系统当前正在处理的数量,大多数工具将其显示为三个平均值,分别为 1、5 和 15 分钟值。

在Linux中,进程分为三种状态,一种是阻塞的进程blocked process,一种是可运行的进程runnable process,另外就是正在运行的进程running process。

进程可运行状态时,它处在一个运行队列run queue中,与其他可运行进程争夺CPU时间。 系统的load是指正在运行和准备好运行的进程的总数。比如现在系统有2个正在运行的进程,3个可运行进程,那么系统的load就是5。cpu.load是基于/proc/loadavg进行统计的。

cpu.load评估

如果cpu.load过大则表示有部分线程在等待获得cpu资源,过小表示cpu资源比较空闲。

对于cpu.load多少开始出现性能问题,外界有不同的说法,有的认为cpu.load/cores最好不要超过1,有的认为cpu.load/cores最好不要超过3,有的认为cpu.load不超过2*cores-2即可。

针对技术商服务进行压测时&#xff0c;发现load低时&#xff0c;接口TP999响应时间<50ms&#xff0c;而cpu.load/cores>4时&#xff0c;TP999响应时间约为200ms左右&#xff0c;多出来的时间可以理解为线程等待cpu处理的时间&#xff0c;可见cpu.load/cores过高时是影响接口响应时间的。

因此可以结合预期的接口响应时间&#xff0c;来定义每个服务的cpu.load/cores不超过多少。比如要求接口响应时间尽可能快的&#xff0c;最好确保cpu.load/cores不超过1&#xff0c;而对时间敏感性要求不太高时&#xff0c;一般要求cpu.load/cores不超过3。



推荐阅读
  • 通常情况下,修改my.cnf配置文件后需要重启MySQL服务才能使新参数生效。然而,通过特定命令可以在不重启服务的情况下实现配置的即时更新。本文将详细介绍如何在线调整MySQL配置,并验证其有效性。 ... [详细]
  • 本文详细分析了JSP(JavaServer Pages)技术的主要优点和缺点,帮助开发者更好地理解其适用场景及潜在挑战。JSP作为一种服务器端技术,广泛应用于Web开发中。 ... [详细]
  • 在计算机技术的学习道路上,51CTO学院以其专业性和专注度给我留下了深刻印象。从2012年接触计算机到2014年开始系统学习网络技术和安全领域,51CTO学院始终是我信赖的学习平台。 ... [详细]
  • Linux 系统启动故障排除指南:MBR 和 GRUB 问题
    本文详细介绍了 Linux 系统启动过程中常见的 MBR 扇区和 GRUB 引导程序故障及其解决方案,涵盖从备份、模拟故障到恢复的具体步骤。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 解决U盘安装系统后无法重启的问题
    本文详细探讨了运维新手常遇到的U盘安装系统后无法正常重启的问题,提供了从问题分析到具体解决方案的完整步骤。通过理解Boot Loader的工作原理和正确配置启动项,帮助用户顺利解决问题。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • 本文介绍如何从JSON格式的文件中提取数据并将其分配给Bash脚本中的变量。我们将探讨具体的命令和工具,帮助你高效地完成这一任务。 ... [详细]
  • 本文详细介绍了如何在云服务器上配置Nginx、Tomcat、JDK和MySQL。涵盖从下载、安装到配置的完整步骤,帮助读者快速搭建Java Web开发环境。 ... [详细]
  • 本文详细介绍了如何在 Android 中使用值动画(ValueAnimator)来动态调整 ImageView 的高度,并探讨了相关的关键属性和方法,包括图片填充后的高度、原始图片高度、动画变化因子以及布局重置等。 ... [详细]
  • 利用jstack进行死锁检测与线程堆栈分析
    本文介绍了如何使用jstack工具进行Java应用中的死锁检测及高CPU使用率线程的堆栈分析,帮助开发者快速定位并解决性能瓶颈。 ... [详细]
author-avatar
钢铁年代2502883227
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有