Kafka是最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为***开源 项目。
Topic & Partition:
Topic相当于传统消息系统MQ中的一个队列queue,producer端发送的message必须指定是发送到哪个topic,但是不需要指定topic下的哪个partition,因为kafka会把收到的message进行load balance,均匀的分布在这个topic下的不同的partition上( hash(message) % [broker数量] )。物理上存储上,这个topic会分成一个或多个partition,每个partiton相当于是一个子queue。在物理结构上,每个partition对应一个物理的目录(文件夹),文件夹命名是[topicname][partition][序号],一个topic可以有无数多的partition,根据业务需求和数据量来设置。在kafka配置文件中可随时更高num.partitions参数来配置更改topic的partition数量,在创建Topic时通过参数指定parittion数量。Topic创建之后通过Kafka提供的工具也可以修改partiton数量。
一般来说,(1)一个Topic的Partition数量大于等于Broker的数量,可以提高吞吐率。(2)同一个Partition的Replica尽量分散到不同的机器,高可用。
当add a new partition的时候,partition里面的message不会重新进行分配,原来的partition里面的message数据不会变,新加的这个partition刚开始是空的,随后进入这个topic的message就会重新参与所有partition的load balance
(1)怎样传送消息:producer先把message发送到partition leader,再由leader发送给其他partition follower。(如果让producer发送给每个replica那就太慢了)
(2)在向Producer发送ACK前需要保证有多少个Replica已经收到该消息:根据ack配的个数而定
(3)怎样处理某个Replica不工作的情况:如果这个不工作的partition replica不在ack列表中,就是producer在发送消息到partition leader上,partition leader向partition follower发送message没有响应而已,这个不会影响整个系统,也不会有什么问题。
如果这个不工作的partition replica在ack列表中的话,producer发送的message的时候会等待这个不工作的partition replca写message成功,但是会等到time out,然后返回失败因为某个ack列表中的partition replica没有响应,此时kafka会自动的把这个部工作的partition replica从ack列表中移除,以后的producer发送message的时候就不会有这个ack列表下的这个部工作的partition replica了。
一个消息如何算投递成功,Kafka提供了三种模式:
第一种是啥都不管,发送出去就当作成功,这种情况当然不能保证消息成功投递到broker;
第二种是Master-Slave模型,只有当Master和所有Slave都接收到消息时,才算投递成功,这种模型提供了最高的投递可靠性,但是损伤了性能;
第三种模型,即只要Master确认收到消息就算投递成功;实际使用时,根据应用特性选择,绝大多数情况下都会中和可靠性和性能选择第三种模型
当ack=1,表示producer写partition leader成功后,broker就返回成功,无论其他的partition follower是否写成功。当ack=2,表示producer写partition leader和其他一个follower成功的时候,broker就返回成功,无论其他的partition follower是否写成功。当ack=-1[parition的数量]的时候,表示只有producer全部写成功的时候,才算成功,kafka broker才返回成功信息。这里需要注意的是,如果ack=1的时候,一旦有个broker宕机导致partition的follower和leader切换,会导致丢数据。
message状态:在Kafka中,消息的状态被保存在consumer中,broker不会关心哪个消息被消费了被谁消费了,只记录一个offset值(指向partition中下一个要被消费的消息位置),这就意味着如果consumer处理不好的话,broker上的一个消息可能会被消费多次。
message持久化:Kafka中会把消息持久化到本地文件系统中,并且保持o(1)极高的效率。我们众所周知IO读取是非常耗资源的性能也是最慢的,这就是为了数据库的瓶颈经常在IO上,需要换SSD硬盘的原因。但是Kafka作为吞吐量极高的MQ,却可以非常高效的message持久化到文件。这是因为Kafka是顺序写入o(1)的时间复杂度,速度非常快。也是高吞吐量的原因。由于message的写入持久化是顺序写入的,因此message在被消费的时候也是按顺序被消费的,保证partition的message是顺序消费的。一般的机器,单机每秒100k条数据。
message有效期:Kafka会长久保留其中的消息,以便consumer可以多次消费,当然其中很多细节是可配置的。
Produer : Producer向Topic发送message,不需要指定partition,直接发送就好了。kafka通过partition ack来控制是否发送成功并把信息返回给producer,producer可以有任意多的thread,这些kafka服务器端是不care的。Producer端的delivery guarantee默认是At least once的。也可以设置Producer异步发送实现At most once。Producer可以用主键幂等性实现Exactly once
Kafka高吞吐量: Kafka的高吞吐量体现在读写上,分布式并发的读和写都非常快,写的性能体现在以o(1)的时间复杂度进行顺序写入。读的性能体现在以o(1)的时间复杂度进行顺序读取, 对topic进行partition分区,consume group中的consume线程可以以很高能性能进行顺序读。
Kafka delivery guarantee(message传送保证):(1)At most once消息可能会丢,绝对不会重复传输;(2)At least once 消息绝对不会丢,但是可能会重复传输;(3)Exactly once每条信息肯定会被传输一次且仅传输一次,这是用户想要的。
批量发送:Kafka支持以消息集合为单位进行批量发送,以提高push效率。
push-and-pull : Kafka中的Producer和consumer采用的是push-and-pull模式,即Producer只管向broker push消息,consumer只管从broker pull消息,两者对消息的生产和消费是异步的。
Kafka集群中broker之间的关系:不是主从关系,各个broker在集群中地位一样,我们可以随意的增加或删除任何一个broker节点。
负载均衡方面: Kafka提供了一个 metadata API来管理broker之间的负载(对Kafka0.8.x而言,对于0.7.x主要靠zookeeper来实现负载均衡)。
同步异步:Producer采用异步push方式,极大提高Kafka系统的吞吐率(可以通过参数控制是采用同步还是异步方式)。
分区机制partition:Kafka的broker端支持消息分区partition,Producer可以决定把消息发到哪个partition,在一个partition 中message的顺序就是Producer发送消息的顺序,一个topic中可以有多个partition,具体partition的数量是可配置的。partition的概念使得kafka作为MQ可以横向扩展,吞吐量巨大。partition可以设置replica副本,replica副本存在不同的kafka broker节点上,第一个partition是leader,其他的是follower,message先写到partition leader上,再由partition leader push到parition follower上。所以说kafka可以水平扩展,也就是扩展partition。
离线数据装载:Kafka由于对可拓展的数据持久化的支持,它也非常适合向Hadoop或者数据仓库中进行数据装载。
实时数据与离线数据:kafka既支持离线数据也支持实时数据,因为kafka的message持久化到文件,并可以设置有效期,因此可以把kafka作为一个高效的存储来使用,可以作为离线数据供后面的分析。当然作为分布式实时消息系统,大多数情况下还是用于实时的数据处理的,但是当cosumer消费能力下降的时候可以通过message的持久化在淤积数据在kafka。
插件支持:现在不少活跃的社区已经开发出不少插件来拓展Kafka的功能,如用来配合Storm、Hadoop、flume相关的插件。
解耦: 相当于一个MQ,使得Producer和Consumer之间异步的操作,系统之间解耦
冗余: replica有多个副本,保证一个broker node宕机后不会影响整个服务
扩展性: broker节点可以水平扩展,partition也可以水平增加,partition replica也可以水平增加
峰值: 在访问量剧增的情况下,kafka水平扩展, 应用仍然需要继续发挥作用
可恢复性: 系统的一部分组件失效时,由于有partition的replica副本,不会影响到整个系统。
顺序保证性:由于kafka的producer的写message与consumer去读message都是顺序的读写,保证了高效的性能。
缓冲:由于producer那面可能业务很简单,而后端consumer业务会很复杂并有数据库的操作,因此肯定是producer会比consumer处理速度快,如果没有kafka,producer直接调用consumer,那么就会造成整个系统的处理速度慢,加一层kafka作为MQ,可以起到缓冲的作用。
异步通信:作为MQ,Producer与Consumer异步通信
Kafka中发布订阅的对象是topic。我们可以为每类数据创建一个topic,把向topic发布消息的客户端称作producer,
从topic订阅消息的客户端称作consumer。
Producers和consumers可以同时从多个topic读写数据。一个kafka集群由一个或多个broker服务器组成,
它负责持久化和备份具体的kafka消息。
**2.2 kafka一些原理概念 **
1.持久化
kafka使用文件存储消息(append only log),这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化是非常艰难的.文件缓存/直接内存映射等是常用的手段.因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数.对于kafka而言,较高性能的磁盘,将会带来更加直接的性能提升.
2.性能
除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题.kafka并没有提供太多高超的技巧;对于producer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息.不过消息量的大小可以通过配置文件来指定.对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次copy和交换(这里涉及到"磁盘IO数据"/"内核内存"/"进程内存"/"网络缓冲区",多者之间的数据copy).
其实对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑.可以将任何在网络上传输的消息都经过压缩.kafka支持gzip/snappy等多种压缩方式.
3.负载均衡
kafka集群中的任何一个broker,都可以向producer提供metadata信息,这些metadata中包含"集群中存活的servers列表"/"partitions leader列表"等信息(请参看zookeeper中的节点信息). 当producer获取到metadata信息之后, producer将会和Topic下所有partition leader保持socket连接;消息由producer直接通过socket发送到broker,中间不会经过任何"路由层".
异步发送,将多条消息暂且在客户端buffer起来,并将他们批量发送到broker;小数据IO太多,会拖慢整体的网络延迟,批量延迟发送事实上提升了网络效率;不过这也有一定的隐患,比如当producer失效时,那些尚未发送的消息将会丢失。
4.Topic模型
其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态.这就要求JMS broker需要太多额外的工作.在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的.当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset.由此可见,consumer客户端也很轻量级。
kafka中consumer负责维护消息的消费记录,而broker则不关心这些,这种设计不仅提高了consumer端的灵活性,也适度的减轻了broker端设计的复杂度;这是和众多JMS prodiver的区别.此外,kafka中消息ACK的设计也和JMS有很大不同,kafka中的消息是批量(通常以消息的条数或者chunk的尺寸为单位)发送给consumer,当消息消费成功后,向zookeeper提交消息的offset,而不会向broker交付ACK.或许你已经意识到,这种"宽松"的设计,将会有"丢失"消息/"消息重发"的危险.
5.消息传输一致
Kafka提供3种消息传输一致性语义:最多1次,最少1次,恰好1次。
最少1次:可能会重传数据,有可能出现数据被重复处理的情况;
最多1次:可能会出现数据丢失情况;
恰好1次:并不是指真正只传输1次,只不过有一个机制。确保不会出现“数据被重复处理”和“数据丢失”的情况。
at most once: 消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中consumer进程失效(crash),导致部分消息未能继续处理.那么此后可能其他consumer会接管,但是因为offset已经提前保存,那么新的consumer将不能fetch到offset之前的消息(尽管它们尚没有被处理),这就是"at most once".
at least once: 消费者fetch消息,然后处理消息,然后保存offset.如果消息处理成功之后,但是在保存offset阶段zookeeper异常或者consumer失效,导致保存offset操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once".
"Kafka Cluster"到消费者的场景中可以采取以下方案来得到“恰好1次”的一致性语义:
最少1次+消费者的输出中额外增加已处理消息最大编号:由于已处理消息最大编号的存在,不会出现重复处理消息的情况。
6.副本
kafka中,replication策略是基于partition,而不是topic;kafka将每个partition数据复制到多个server上,任何一个partition有一个leader和多个follower(可以没有);备份的个数可以通过broker配置文件来设定。leader处理所有的read-write请求,follower需要和leader保持同步.Follower就像一个"consumer",消费消息并保存在本地日志中;leader负责跟踪所有的follower状态,如果follower"落后"太多或者失效,leader将会把它从replicas同步列表中删除.当所有的follower都将一条消息保存成功,此消息才被认为是"committed",那么此时consumer才能消费它,这种同步策略,就要求follower和leader之间必须具有良好的网络环境.即使只有一个replicas实例存活,仍然可以保证消息的正常发送和接收,只要zookeeper集群存活即可.
选择follower时需要兼顾一个问题,就是新leader server上所已经承载的partition leader的个数,如果一个server上有过多的partition leader,意味着此server将承受着更多的IO压力.在选举新leader,需要考虑到"负载均衡",partition leader较少的broker将会更有可能成为新的leader.
7.log
每个log entry格式为"4个字节的数字N表示消息的长度" + "N个字节的消息内容";每个日志都有一个offset来唯一的标记一条消息,offset的值为8个字节的数字,表示此消息在此partition中所处的起始位置..每个partition在物理存储层面,有多个log file组成(称为segment).segment file的命名为"最小offset".kafka.例如"00000000000.kafka";其中"最小offset"表示此segment中起始消息的offset.
获取消息时,需要指定offset和最大chunk尺寸,offset用来表示消息的起始位置,chunk size用来表示最大获取消息的总长度(间接的表示消息的条数).根据offset,可以找到此消息所在segment文件,然后根据segment的最小offset取差值,得到它在file中的相对位置,直接读取输出即可.
8.分布式
kafka使用zookeeper来存储一些meta信息,并使用了zookeeper watch机制来发现meta信息的变更并作出相应的动作(比如consumer失效,触发负载均衡等)
Broker node registry: 当一个kafka broker启动后,首先会向zookeeper注册自己的节点信息(临时znode),同时当broker和zookeeper断开连接时,此znode也会被删除.
Broker Topic Registry: 当一个broker启动时,会向zookeeper注册自己持有的topic和partitions信息,仍然是一个临时znode.
Consumer and Consumer group: 每个consumer客户端被创建时,会向zookeeper注册自己的信息;此作用主要是为了"负载均衡".一个group中的多个consumer可以交错的消费一个topic的所有partitions;简而言之,保证此topic的所有partitions都能被此group所消费,且消费时为了性能考虑,让partition相对均衡的分散到每个consumer上.
Consumer id Registry: 每个consumer都有一个唯一的ID(host:uuid,可以通过配置文件指定,也可以由系统生成),此id用来标记消费者信息.
Consumer offset Tracking: 用来跟踪每个consumer目前所消费的partition中最大的offset.此znode为持久节点,可以看出offset跟group_id有关,以表明当group中一个消费者失效,其他consumer可以继续消费.
Partition Owner registry: 用来标记partition正在被哪个consumer消费.临时znode。此节点表达了"一个partition"只能被group下一个consumer消费,同时当group下某个consumer失效,那么将会触发负载均衡(即:让partitions在多个consumer间均衡消费,接管那些"游离"的partitions)
当consumer启动时,所触发的操作:
A) 首先进行"Consumer id Registry";
B) 然后在"Consumer id Registry"节点下注册一个watch用来监听当前group中其他consumer的"leave"和"join";只要此znode path下节点列表变更,都会触发此group下consumer的负载均衡.(比如一个consumer失效,那么其他consumer接管partitions).
C) 在"Broker id registry"节点下,注册一个watch用来监听broker的存活情况;如果broker列表变更,将会触发所有的groups下的consumer重新balance.
总结:
Producer端使用zookeeper用来"发现"broker列表,以及和Topic下每个partition leader建立socket连接并发送消息.
Broker端使用zookeeper用来注册broker信息,已经监测partition leader存活性.
Consumer端使用zookeeper用来注册consumer信息,其中包括consumer消费的partition列表等,同时也用来发现broker列表,并和partition leader建立socket连接,并获取消息。
9.Leader的选择
Kafka的核心是日志文件,日志文件在集群中的同步是分布式数据系统最基础的要素。
如果leaders永远不会down的话我们就不需要followers了!一旦leader down掉了,需要在followers中选择一个新的leader.但是followers本身有可能延时太久或者crash,所以必须选择高质量的follower作为leader.必须保证,一旦一个消息被提交了,但是leader down掉了,新选出的leader必须可以提供这条消息。大部分的分布式系统采用了多数投票法则选择新的leader,对于多数投票法则,就是根据所有副本节点的状况动态的选择最适合的作为leader.Kafka并不是使用这种方法。
Kafka动态维护了一个同步状态的副本的集合(a set of in-sync replicas),简称ISR,在这个集合中的节点都是和leader保持高度一致的,任何一条消息必须被这个集合中的每个节点读取并追加到日志中了,才回通知外部这个消息已经被提交了。因此这个集合中的任何一个节点随时都可以被选为leader.ISR在ZooKeeper中维护。ISR中有f+1个节点,就可以允许在f个节点down掉的情况下不会丢失消息并正常提供服。ISR的成员是动态的,如果一个节点被淘汰了,当它重新达到“同步中”的状态时,他可以重新加入ISR.这种leader的选择方式是非常快速的,适合kafka的应用场景。
一个邪恶的想法:如果所有节点都down掉了怎么办?Kafka对于数据不会丢失的保证,是基于至少一个节点是存活的,一旦所有节点都down了,这个就不能保证了。
实际应用中,当所有的副本都down掉时,必须及时作出反应。可以有以下两种选择:
1. 等待ISR中的任何一个节点恢复并担任leader。
2. 选择所有节点中(不只是ISR)第一个恢复的节点作为leader.
这是一个在可用性和连续性之间的权衡。如果等待ISR中的节点恢复,一旦ISR中的节点起不起来或者数据都是了,那集群就永远恢复不了了。如果等待ISR意外的节点恢复,这个节点的数据就会被作为线上数据,有可能和真实的数据有所出入,因为有些数据它可能还没同步到。Kafka目前选择了第二种策略,在未来的版本中将使这个策略的选择可配置,可以根据场景灵活的选择。
这种窘境不只Kafka会遇到,几乎所有的分布式数据系统都会遇到。
10.副本管理
以上仅仅以一个topic一个分区为例子进行了讨论,但实际上一个Kafka将会管理成千上万的topic分区.Kafka尽量的使所有分区均匀的分布到集群所有的节点上而不是集中在某些节点上,另外主从关系也尽量均衡这样每个几点都会担任一定比例的分区的leader.
优化leader的选择过程也是很重要的,它决定了系统发生故障时的空窗期有多久。Kafka选择一个节点作为“controller”,当发现有节点down掉的时候它负责在游泳分区的所有节点中选择新的leader,这使得Kafka可以批量的高效的管理所有分区节点的主从关系。如果controller down掉了,活着的节点中的一个会备切换为新的controller.
11.Leader与副本同步
对于某个分区来说,保存正分区的"broker"为该分区的"leader",保存备份分区的"broker"为该分区的"follower"。备份分区会完全复制正分区的消息,包括消息的编号等附加属性值。为了保持正分区和备份分区的内容一致,Kafka采取的方案是在保存备份分区的"broker"上开启一个消费者进程进行消费,从而使得正分区的内容与备份分区的内容保持一致。一般情况下,一个分区有一个“正分区”和零到多个“备份分区”。可以配置“正分区+备份分区”的总数量,关于这个配置,不同主题可以有不同的配置值。注意,生产者,消费者只与保存正分区的"leader"进行通信。
Kafka允许topic的分区拥有若干副本,这个数量是可以配置的,你可以为每个topic配置副本的数量。Kafka会自动在每个副本上备份数据,所以当一个节点down掉时数据依然是可用的。
Kafka的副本功能不是必须的,你可以配置只有一个副本,这样其实就相当于只有一份数据。
创建副本的单位是topic的分区,每个分区都有一个leader和零或多个followers.所有的读写操作都由leader处理,一般分区的数量都比broker的数量多的多,各分区的leader均匀的分布在brokers中。所有的followers都复制leader的日志,日志中的消息和顺序都和leader中的一致。followers向普通的consumer那样从leader那里拉取消息并保存在自己的日志文件中。
许多分布式的消息系统自动的处理失败的请求,它们对一个节点是否着(alive)”有着清晰的定义。Kafka判断一个节点是否活着有两个条件:
1. 节点必须可以维护和ZooKeeper的连接,Zookeeper通过心跳机制检查每个节点的连接。
2. 如果节点是个follower,他必须能及时的同步leader的写操作,延时不能太久。
符合以上条件的节点准确的说应该是“同步中的(in sync)”,而不是模糊的说是“活着的”或是“失败的”。Leader会追踪所有“同步中”的节点,一旦一个down掉了,或是卡住了,或是延时太久,leader就会把它移除。至于延时多久算是“太久”,是由参数replica.lag.max.messages决定的,怎样算是卡住了,怎是由参数replica.lag.time.max.ms决定的。
只有当消息被所有的副本加入到日志中时,才算是“committed”,只有committed的消息才会发送给consumer,这样就不用担心一旦leader down掉了消息会丢失。Producer也可以选择是否等待消息被提交的通知,这个是由参数acks决定的。
Kafka保证只要有一个“同步中”的节点,“committed”的消息就不会丢失。
2.3 kafka拓扑结构
![image](http://upload-images.jianshu.io/upload_images/13587608-31ec6569005cb495?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) 一个典型的Kafka集群中包含若干Producer(可以是web前端FET,或者是服务器日志等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干ConsumerGroup,以及一个Zookeeper集群。Kafka通过Zookeeper管理Kafka集群配置:选举Kafka broker的leader,以及在Consumer Group发生变化时进行rebalance,因为consumer消费kafka topic的partition的offsite信息是存在Zookeeper的。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。
分析过程分为以下4个步骤:
通过上述4过程详细分析,我们就可以清楚认识到kafka文件存储机制的奥秘。
2.3 topic中partition存储分布
假设实验环境中Kafka集群只有一个broker,xxx/message-folder为数据文件存储根目录,在Kafka broker中server.properties文件配置(参数log.dirs=xxx/message-folder),例如创建2个topic名 称分别为report_push、launch_info, partitions数量都为partitiOns=4
存储路径和目录规则为:
xxx/message-folder
|--report_push-0
|--report_push-1
|--report_push-2
|--report_push-3
|--launch_info-0
|--launch_info-1
|--launch_info-2
|--launch_info-3
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。
消息发送时都被发送到一个topic,其本质就是一个目录,而topic由是由一些Partition组成,其组织结构如下图所示:
我们可以看到,Partition是一个Queue的结构,每个Partition中的消息都是有序的,生产的消息被不断追加到Partition上,其中的每一个消息都被赋予了一个唯一的offset值。
Kafka集群会保存所有的消息,不管消息有没有被消费;我们可以设定消息的过期时间,只有过期的数据才会被自动清除以释放磁盘空间。比如我们设置消息过期时间为2天,那么这2天内的所有消息都会被保存到集群中,数据只有超过了两天才会被清除。
Kafka只维护在Partition中的offset值,因为这个offsite标识着这个partition的message消费到哪条了。Consumer每消费一个消息,offset就会加1。其实消息的状态完全是由Consumer控制的,Consumer可以跟踪和重设这个offset值,这样的话Consumer就可以读取任意位置的消息。
把消息日志以Partition的形式存放有多重考虑,第一,方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;第二就是可以提高并发,因为可以以Partition为单位读写了。
通过上面介绍的我们可以知道,kafka中的数据是持久化的并且能够容错的。Kafka允许用户为每个topic设置副本数量,副本数量决定了有几个broker来存放写入的数据。如果你的副本数量设置为3,那么一份数据就会被存放在3台不同的机器上,那么就允许有2个机器失败。一般推荐副本数量至少为2,这样就可以保证增减、重启机器时不会影响到数据消费。如果对数据持久化有更高的要求,可以把副本数量设置为3或者更多。
Kafka中的topic是以partition的形式存放的,每一个topic都可以设置它的partition数量,Partition的数量决定了组成topic的message的数量。Producer在生产数据时,会按照一定规则(这个规则是可以自定义的)把消息发布到topic的各个partition中。上面将的副本都是以partition为单位的,不过只有一个partition的副本会被选举成leader作为读写用。
关于如何设置partition值需要考虑的因素。一个partition只能被一个消费者消费(一个消费者可以同时消费多个partition),因此,如果设置的partition的数量小于consumer的数量,就会有消费者消费不到数据。所以,推荐partition的数量一定要大于同时运行的consumer的数量。另外一方面,建议partition的数量大于集群broker的数量,这样leader partition就可以均匀的分布在各个broker中,最终使得集群负载均衡。在Cloudera,每个topic都有上百个partition。需要注意的是,kafka需要为每个partition分配一些内存来缓存消息数据,如果partition数量越大,就要为kafka分配更大的heap space。
2.4 partiton中文件存储方式
这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。
2.5 partiton中segment文件存储结构
producer发message到某个topic,message会被均匀的分布到多个partition上(随机或根据用户指定的回调函数进行分布),kafka broker收到message往对应partition的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息consumer才能消费,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。
每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。
每个segment中存储很多条消息,消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。
下面文件列表是笔者在Kafka broker上做的一个实验,创建一个topicXXX包含1 partition,设置每个segment大小为500MB,并启动producer向Kafka broker写入大量数据,如下图2所示segment文件列表形象说明了上述2个规则:
以上述图2中一对segment file文件为例,说明segment中index<—->data file对应关系物理结构如下:
上述图3中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。其中以索引文件中 元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message)、以及该消息的物理偏移 地址为497。
从上述图3了解到segment data file由许多message组成,下面详细说明message物理结构如下:
关键字 | 解释说明 |
---|---|
8 byte offset | 在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message |
4 byte message size | message大小 |
4 byte CRC32 | 用crc32校验message |
1 byte “magic" | 表示本次发布Kafka服务程序协议版本号 |
1 byte “attributes" | 表示为独立版本、或标识压缩类型、或编码类型。 |
4 byte key length | 表示key的长度,当key为-1时,K byte key字段不填 |
K byte key | 可选 |
value bytes payload | 表示实际消息数据。 |
2.6 在partition中如何通过offset查找message
例如读取offset=368776的message,需要通过下面2个步骤查找。
第一步查找segment file
上述图2为例,其中00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0.第二个文件 00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1.同样,第三个文件00000000000000737337.index的起始偏移量为737338=737337 + 1,其他后续文件依次类推,以起始偏移量命名并排序这些文件,只要根据offset 二分查找文件列表,就可以快速定位到具体文件。
当offset=368776时定位到00000000000000368769.index|log
第二步通过segment file查找message通过第一步定位到segment file,当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置和 00000000000000368769.log的物理偏移地址,然后再通过00000000000000368769.log顺序查找直到 offset=368776为止。
segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它 比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
kafka会记录offset到zk中。但是,zk client api对zk的频繁写入是一个低效的操作。0.8.2 kafka引入了native offset storage,将offset管理从zk移出,并且可以做到水平扩展。其原理就是利用了kafka的compacted topic,offset以consumer group,topic与partion的组合作为key直接提交到compacted topic中。同时Kafka又在内存中维护了的三元组来维护最新的offset信息,consumer来取最新offset信息的时候直接内存里拿即可。当然,kafka允许你快速的checkpoint最新的offset信息到磁盘上。