热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

ios开发中计算代码运算时间_Tensorflow2.0和Tensorflow1.x的计算区别

TensorFlow2是一个与TensorFlow1.x使用体验完全不同的框架,TensorFlow2不兼容TensorFlow1.x的代码,同时在编程
4cc6e2ca750d1b91af345b20c27fcdd9.png

TensorFlow 2 是一个与 TensorFlow 1.x 使用体验完全不同的框架,TensorFlow 2 不兼容TensorFlow 1.x 的代码,同时在编程风格、函数接口设计等上也大相径庭,TensorFlow 1.x的代码需要依赖人工的方式迁移,自动化迁移方式并不靠谱。

TensorFlow 2 支持动态图优先模式,在计算时可以同时获得计算图与数值结果,可以代码中调试实时打印数据,搭建网络也像搭积木一样,层层堆叠,非常符合软件开发思维。

以简单的a + b的相加运算为例,在 TensorFlow 1.x 中,首先创建计算图, 创建计算图的过程就类比通过符号建立公式 = + 的过程,仅仅是记录了公式的计算步

骤,并没有实际计算公式的数值结果,需要通过运行公式的输出端子,并赋值 =2.0, = 4.0才能获得的数值结果

613f022a45df08612d336e5bb439ce8f.png

tensorflow 1.x

接下来我们使用 TensorFlow 2 来完成a+b运算

9e7f5d31c517fbd62848271b7867087f.png

tensorflow 2.0

b325b2cd9cbbe9a533d3479a6ceb69b6.png

运行结果

这种运算时同时创建计算图 + 和计算数值结果a+b的方式叫做命令式编程,也称为动态图优先模式。TensorFlow 2 和 PyTorch 都是采用动态图(优先)模式开发,调试方便,所见即所得。一般来说,动态图模型开发效率高,但是运行效率可能不如静态图模式,TensorFlow 2 也支持通过 tf.function 将动态图优先模式的代码转化为静态图模式。



推荐阅读
  • 本文介绍如何使用JavaScript中的for循环来创建一个九九乘法表,适合初学者学习循环结构的应用。 ... [详细]
  • 在Conda环境中高效配置并安装PyTorch和TensorFlow GPU版的方法如下:首先,创建一个新的Conda环境以避免与基础环境发生冲突,例如使用 `conda create -n pytorch_gpu python=3.7` 命令。接着,激活该环境,确保所有依赖项都正确安装。此外,建议在安装过程中指定CUDA版本,以确保与GPU兼容性。通过这些步骤,可以确保PyTorch和TensorFlow GPU版的顺利安装和运行。 ... [详细]
  • Hanks博士是一位著名的生物技术专家,他的儿子Hankson对数学有着浓厚的兴趣。最近,Hankson遇到了一个有趣的数学问题,涉及求解特定条件下的正整数x,而不使用传统的辗转相除法。 ... [详细]
  • 本文详细解析了MySQL中常见的几种错误,并提供了具体的解决方法,帮助开发者快速定位和解决问题。 ... [详细]
  • 本文探讨了Python类型注解使用率低下的原因,主要归结于历史背景和投资回报率(ROI)的考量。文章不仅分析了类型注解的实际效用,还回顾了Python类型注解的发展历程。 ... [详细]
  • 函子(Functor)是函数式编程中的一个重要概念,它不仅是一个特殊的容器,还提供了一种优雅的方式来处理值和函数。本文将详细介绍函子的基本概念及其在函数式编程中的应用,包括如何通过函子控制副作用、处理异常以及进行异步操作。 ... [详细]
  • 本文介绍了如何利用jQuery实现对网页上多个div元素的显示与隐藏控制,包括基本的toggle方法及更复杂的显示隐藏逻辑。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 本文通过一个具体的实例,介绍如何利用TensorFlow框架来计算神经网络模型在多分类任务中的Top-K准确率。代码中包含了随机种子设置、模拟预测结果生成、真实标签生成以及准确率计算等步骤。 ... [详细]
  • 本文提供了一个使用 while 循环在 Linux Shell 脚本中处理文件列表的具体示例。通过这个例子,读者可以了解如何利用 shell 脚本来批量处理文件,包括文件名的匹配和处理。 ... [详细]
  • 解决Jupyter Notebook 中无法找到 TensorFlow 的问题
    本文记录了解决 Jupyter Notebook 在特定环境中无法识别已安装的 TensorFlow 的方法。主要原因是 Jupyter 默认在 base 环境中运行,而 TensorFlow 可能在其他环境中。通过配置 Jupyter 使其能够访问目标环境中的 TensorFlow。 ... [详细]
  • 使用 Jupyter Notebook 实现 Markdown 编写与代码运行
    Jupyter Notebook 是一个开源的基于网页的应用程序,允许用户在同一文档中编写 Markdown 文本和运行多种编程语言的代码,并实时查看运行结果。 ... [详细]
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • PyTorch实用技巧汇总(持续更新中)
    空洞卷积(Dilated Convolutions)在卷积操作中通过在卷积核元素之间插入空格来扩大感受野,这一过程由超参数 dilation rate 控制。这种技术在保持参数数量不变的情况下,能够有效地捕捉更大范围的上下文信息,适用于多种视觉任务,如图像分割和目标检测。本文将详细介绍空洞卷积的计算原理及其应用场景。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
author-avatar
hro5028136
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有