作者:dsjdsjdsjjk_896 | 来源:互联网 | 2023-10-12 15:29
icositrigonical号原文:https://www.
icositrigonical 号
原文:https://www.geeksforgeeks.org/icositrigonal-number/
给定一个数字 N ,任务是找到 N 第T5【Icositrigonal】号。
一个整数是一类整数。它有一个 23 边的多边形,叫做 Icositrigon。第 N 个 Icositrigonal 数字计数是 23 个点的数量,所有其他点都被一个公共的共享角包围并形成一个图案。前几个 Icositrigonol 数字是 1、23、66、130、215、321、448……
例:
输入: N = 2
输出: 23
解释:
第二个 Icositrigonol 数是 66。
输入: N = 6
输出: 321
方法:第 N 个 Icositrigonal 数由公式给出:
以下是上述方法的实现:
C++
// C++ program to find nth
// Icositrigonal number
#include
using namespace std;
// Function to find N-th
// Icositrigonal number
int Icositrigonal_num(int n)
{
// Formula to calculate nth
// Icositrigonal number
return (21 * n * n - 19 * n) / 2;
}
// Driver Code
int main()
{
int n = 3;
cout < n = 10;
cout < return 0;
}
Java 语言(一种计算机语言,尤用于创建网站)
// Java program to find nth
// Icositrigonal number
class GFG{
// Function to find N-th
// Icositrigonal number
static int IcositrigonalNum(int n)
{
// Formula to calculate nth
// Icositrigonal number
return (21 * n * n - 19 * n) / 2;
}
// Driver code
public static void main(String[] args)
{
int n = 3;
System.out.print(IcositrigonalNum(n) + "\n");
n = 10;
System.out.print(IcositrigonalNum(n));
}
}
// This code is contributed by spp____
Python 3
# Python3 program to find nth
# Icositrigonal number
# Function to find N-th
# Icositrigonal number
def IcositrigonalNum(n):
# Formula to calculate nth
# Icositrigonal number
return (21 * n * n - 19 * n) / 2;
# Driver code
n = 3
print(IcositrigonalNum(n))
n = 10
print(IcositrigonalNum(n))
# This code is contributed by spp____
C
// C# program to find nth
// Icositrigonal number
using System;
class GFG{
// Function to find N-th
// Icositrigonal number
static int IcositrigonalNum(int n)
{
// Formula to calculate nth
// Icositrigonal number
return (21 * n * n - 19 * n) / 2;
}
// Driver code
public static void Main()
{
int n = 3;
Console.WriteLine(IcositrigonalNum(n));
n = 10;
Console.WriteLine(IcositrigonalNum(n));
}
}
// This code is contributed by spp____
java 描述语言
Output:
66
955
参考:T2】https://en.wikipedia.org/wiki/Polygonal_number