热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hourglass

hourglass-Model(pytorch版本1.一论文导读2.二论文精读3.三代码实现4.四问题思索《StackedHourglassNetworkforHumanPoseE

hourglass




  • -Model(pytorch版本



  • 1.一 论文导读
  • 2.二 论文精读
  • 3.三 代码实现
  • 4.四 问题思索

《Stacked Hourglass Network for Human Pose Estimation》
—基于hourglass的身体姿态识别
作者:Alejandro Newell,etc.
单位:密歇根大学
发表会议及时间:ECCV 2016


一 论文导读


一 背景及意义
姿态估计(pose estimation)
在计算机视觉领域是一个非常重要的方向,人类动作理解,人机互动等等应用都需要精确的姿态识别

目前,绝大多数的2d姿态识别都是识别人体的关键点
比如:给定一张普通的RGB图像,算法会给出人体的脚踝,胳膊,面部等区域的关键点

目前,基于stacked Hourglass Model 的各种变种算法,牢牢占据了姿态检测的半壁江山,所以stacked hourglass model 非常重要

姿态识别分单人和多人,本篇文章为单人识别

二 研究成果

  1. 理解图片或视频人类的行为,一个关键是姿态预测
  2. 在动画和人机交互领域起到重要作用
  3. 一个好的姿态预测系统需要在变形、遮挡,还有在衣服和光线变化下具有鲁棒性
  4. 卷积神经网络取代过去手工或者图形合成方法,有了巨大的进步
  5. 将过个低分辨率的模型进行结合
  6. 重复使用自下而上、自上而下的方式,结合中间监督来实现Human Pose Estimation
  7. 不同层对不同的特征容易识别,那就可以识别人体的不同部分

论文结构如下图:
在这里插入图片描述
使用了金字塔结构,一小一大之间可以提取很多的特征,不同层对不同的特征容易识别,那就可以识别人体的不同部分

在这里插入图片描述

二 论文精读



三 代码实现



四 问题思索



推荐阅读
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 本文将深入探讨生成对抗网络(GAN)在计算机视觉领域的应用。作为该领域的经典模型,GAN通过生成器和判别器的对抗训练,能够高效地生成高质量的图像。本文不仅回顾了GAN的基本原理,还将介绍一些最新的进展和技术优化方法,帮助读者全面掌握这一重要工具。 ... [详细]
  • 不用蘑菇,不拾金币,我通过强化学习成功通关29关马里奥,创造全新纪录
    《超级马里奥兄弟》由任天堂于1985年首次发布,是一款经典的横版过关游戏,至今已在多个平台上售出超过5亿套。该游戏不仅勾起了许多玩家的童年回忆,也成为强化学习领域的热门研究对象。近日,通过先进的强化学习技术,研究人员成功让AI通关了29关,创造了新的纪录。这一成就不仅展示了强化学习在游戏领域的潜力,也为未来的人工智能应用提供了宝贵的经验。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 中国学者实现 CNN 全程可视化,详尽展示每次卷积、ReLU 和池化过程 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 射频领域的博士学位在信号处理算法方面具有广阔的职业前景,尤其是在射频技术的应用中。例如,加入华为的射频基站部门,从事数字预失真等关键技术的研发工作。在此过程中,需要注意持续跟踪最新的学术和技术进展,保持对行业动态的敏感性,并不断提升自身的实践能力和创新能力。此外,除了技术层面,还应关注行业的整体发展趋势,以便更好地规划职业生涯。 ... [详细]
  • 理工科男女不容错过的神奇资源网站
    十一长假即将结束,你的假期学习计划进展如何?无论你是在家中、思念家乡,还是身处异国他乡,理工科学生都不容错过一些神奇的资源网站。这些网站提供了丰富的学术资料、实验数据和技术文档,能够帮助你在假期中高效学习和提升专业技能。 ... [详细]
  • 超分辨率技术的全球研究进展与应用现状综述
    本文综述了图像超分辨率(Super-Resolution, SR)技术在全球范围内的最新研究进展及其应用现状。超分辨率技术旨在从单幅或多幅低分辨率(Low-Resolution, LR)图像中恢复出高质量的高分辨率(High-Resolution, HR)图像。该技术在遥感、医疗成像、视频处理等多个领域展现出广泛的应用前景。文章详细分析了当前主流的超分辨率算法,包括基于传统方法和深度学习的方法,并探讨了其在实际应用中的优缺点及未来发展方向。 ... [详细]
  • 视觉图像的生成机制与英文术语解析
    近期,Google Brain、牛津大学和清华大学等多家研究机构相继发布了关于多层感知机(MLP)在视觉图像分类中的应用成果。这些研究深入探讨了MLP在视觉任务中的工作机制,并解析了相关技术术语,为理解视觉图像生成提供了新的视角和方法。 ... [详细]
  • 在上一节中,我们完成了网络的前向传播实现。本节将重点探讨如何为检测输出设定目标置信度阈值,并应用非极大值抑制技术以提高检测精度。为了更好地理解和实践这些内容,建议读者已经完成本系列教程的前三部分,并具备一定的PyTorch基础知识。此外,我们将详细介绍这些技术的原理及其在实际应用中的重要性,帮助读者深入理解目标检测算法的核心机制。 ... [详细]
  • 在本文中,我们将深入探讨斯坦福大学机器学习课程第二部分的核心内容与学习体会。文章不仅涵盖了正则化(Regularization)等关键概念,还结合实际案例分析了这些理论在实践中的应用,帮助读者更好地理解和掌握机器学习的高级技巧。此外,我们还将分享一些学习过程中遇到的挑战及解决方案,为后续学习者提供参考。 ... [详细]
author-avatar
7777-丿M
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有