热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

判断有向图是否存在3元环并进行拓扑排序

题目大意:给你一个关系图,判断是否合法,每个人都有师父和徒弟,可以有很多个;但是你的师父不能是你徒弟的徒弟,或者说你的徒弟不能是你师父的师父,这是不合法的情况。简单理解就是:判断有

题目大意:

   给你一个关系图,判断是否合法,

  每个人都有师父和徒弟,可以有很多个;

  但是你的师父不能是你徒弟的徒弟,或者说你的徒弟不能是你师父的师父,这是不合法的情况。

  简单理解就是:判断有向图中是否存在3元环;

  此题至少有三种做法,此处跟新拓扑排序的做法:

1. 拓扑排序:

  1. 统计每个点的入度;

   2. 将入度为0的点加入队列;

    3. 出去队首元素,将此元素所连接的点入度减一,若此后入度为0则加入队列;

   4. 判断队列循环次数,若等于n则不存在3元环,则此关系图合法;

题目链接:

点击打开链接

#include  
#include  
#include  
#include  
#include  
#include  
#include  
#include  
#include  
#include  
#include  
using namespace std;  
const int  N = 2005;
const int  M = 3000005;
int n,m;
int tot,flag;
int in[N],head[N];
struct lp
{
    int u,v,nex;
    lp(){}
    lp(int a,int b,int c):
    u(a),v(b),nex(c){}
}cw[N];
void add(int a,int b){
    cw[++tot]=lp(a,b,head[a]);
    head[a]=tot;
}
void tuopu(){
    queue<int>Q;
    while(!Q.empty())Q.pop();
    for(int i=0;ii){
        if(in[i]==0)Q.push(i);
    }
    int t=0;
    while(!Q.empty()){
        t++;
        int u=Q.front();Q.pop();
        for(int i=head[u];i!=-1;i=cw[i].nex){
            int v=cw[i].v;
            in[v]--;
            if(in[v]==0)Q.push(v);
        }
    }
    if(t==n)flag=1;
}
int main(int argc, char const *argv[])
{
    int a,b;
    while(~scanf("%d%d",&n,&m)&&(n)){
        memset(in,0,sizeof(in));
        tot=-1;
        memset(head,-1,sizeof(head));
        for(int i=0;ii){
            scanf("%d%d",&a,&b);
            add(a,b);
            in[b]++;
        }
        flag=0;
        tuopu();
        if(flag)printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}
View Code

 


推荐阅读
  • 深入解析 Android IPC 中的 Messenger 机制
    本文详细介绍了 Android 中基于消息传递的进程间通信(IPC)机制——Messenger。通过实例和源码分析,帮助开发者更好地理解和使用这一高效的通信工具。 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 本题旨在通过给定的评级信息,利用拓扑排序和并查集算法来确定全球 Tetris 高手排行榜。题目要求判断是否可以根据提供的信息生成一个明确的排名表,或者是否存在冲突或信息不足的情况。 ... [详细]
  • 本文深入探讨了POJ2762问题,旨在通过强连通分量缩点和单向连通性的判断方法,解决有向图中任意两点之间的可达性问题。文章详细介绍了算法原理、实现步骤,并附带完整的代码示例。 ... [详细]
  • 本文详细介绍了Grand Central Dispatch (GCD) 的核心概念和使用方法,探讨了任务队列、同步与异步执行以及常见的死锁问题。通过具体示例和代码片段,帮助开发者更好地理解和应用GCD进行多线程开发。 ... [详细]
  • 本文详细介绍了 GWT 中 PopupPanel 类的 onKeyDownPreview 方法,提供了多个代码示例及应用场景,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文提供了使用Java实现Bellman-Ford算法解决POJ 3259问题的代码示例,详细解释了如何通过该算法检测负权环来判断时间旅行的可能性。 ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • 并发编程 12—— 任务取消与关闭 之 shutdownNow 的局限性
    Java并发编程实践目录并发编程01——ThreadLocal并发编程02——ConcurrentHashMap并发编程03——阻塞队列和生产者-消费者模式并发编程04——闭锁Co ... [详细]
author-avatar
开在覀黎明前的小茉莉
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有