热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hbase系统架构图以及各部分的功能作用,物理存储,HBase寻址机制,读写过程,Regin管理,Master工作机制

1.1hbase内部原理1.1.1系统架构Client1包含访问hbase的接口,client维护着一些cache来加快对hbase的访问,比如regione的位置信息。

1.1 hbase内部原理

1.1.1 系统架构

这里写图片描述

Client
1 包含访问hbase的接口,client维护着一些cache来加快对hbase的访问,比如regione的位置信息。

Zookeeper
1 保证任何时候,集群中只有一个master
2 存贮所有Region的寻址入口—-root表在哪台服务器上。
3 实时监控Region Server的状态,将Region server的上线和下线信息实时通知给Master
4 存储Hbase的schema,包括有哪些table,每个table有哪些column family

Master职责
1 为Region server分配region
2 负责region server的负载均衡
3 发现失效的region server并重新分配其上的region
4 HDFS上的垃圾文件回收
5 处理schema更新请求

Region Server职责
1 Region server维护Master分配给它的region,处理对这些region的IO请求
2 Region server负责切分在运行过程中变得过大的region
可以看到,client访问hbase上数据的过程并不需要master参与(寻址访问zookeeper和region server,数据读写访问regione server),master仅仅维护者table和region的元数据信息,负载很低。

1.1.2 物理存储

1、整体结构

这里写图片描述
1 Table中的所有行都按照row key的字典序排列。
2 Table 在行的方向上分割为多个Hregion。

3 region按大小分割的(默认10G),每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,Hregion就会等分会两个新的Hregion。当table中的行不断增多,就会有越来越多的Hregion。

4 Hregion是Hbase中分布式存储和负载均衡的最小单元。最小单元就表示不同的Hregion可以分布在不同的HRegion server上。但一个Hregion是不会拆分到多个server上的。

5 HRegion虽然是负载均衡的最小单元,但并不是物理存储的最小单元。
事实上,HRegion由一个或者多个Store组成,每个store保存一个column family。
每个Strore又由一个memStore和0至多个StoreFile组成。如上图
这里写图片描述

2、STORE FILE & HFILE结构
StoreFile以HFile格式保存在HDFS上。

附:HFile的格式为:
这里写图片描述
首先HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。正如图中所示的,Trailer中有指针指向其他数 据块的起始点。
File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等。
Data Index和Meta Index块记录了每个Data块和Meta块的起始点。
Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询。 每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏。
HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:
这里写图片描述
开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是 RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

HFile分为六个部分:
Data Block 段–保存表中的数据,这部分可以被压缩
Meta Block 段 (可选的)–保存用户自定义的kv对,可以被压缩。
File Info 段–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。
Data Block Index 段–Data Block的索引。每条索引的key是被索引的block的第一条记录的key。
Meta Block Index段 (可选的)–Meta Block的索引。
Trailer–这一段是定长的。保存了每一段的偏移量,读取一个HFile时,会首先 读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个 block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰。
HFile的Data Block,Meta Block通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩。
目标Hfile的压缩支持两种方式:Gzip,Lzo。

3、Memstore与storefile
一个region由多个store组成,每个store包含一个列族的所有数据
Store包括位于内存的memstore和位于硬盘的storefile
写操作先写入memstore,当memstore中的数据量达到某个阈值,Hregionserver启动flashcache进程写入storefile,每次写入形成单独一个storefile
当storefile大小超过一定阈值后,会把当前的region分割成两个,并由Hmaster分配给相应的region服务器,实现负载均衡
客户端检索数据时,先在memstore找,找不到再找storefile

4、HLog(WAL log)
WAL 意为Write ahead log(http://en.wikipedia.org/wiki/Write-ahead_logging),类似mysql中的binlog,用来 做灾难恢复只用,Hlog记录数据的所有变更,一旦数据修改,就可以从log中进行恢复。
每个Region Server维护一个Hlog,而不是每个Region一个。这样不同region(来自不同table)的日志会混在一起,这样做的目的是不断追加单个文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高对table的写性能。带来的麻烦是,如果一台region server下线,为了恢复其上的region,需要将region server上的log进行拆分,然后分发到其它region server上进行恢复。
HLog文件就是一个普通的Hadoop Sequence File:
 HLog Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是”写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。
 HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。

1.1.3 寻址机制

1、寻址示意图
这里写图片描述
2、-ROOT-和.META.表结构
这里写图片描述

.META.行记录结构
这里写图片描述

3、寻址流程
现在假设我们要从Table2里面插寻一条RowKey是RK10000的数据。那么我们应该遵循以下步骤:
1. 从.META.表里面查询哪个Region包含这条数据。
2. 获取管理这个Region的RegionServer地址。
3. 连接这个RegionServer, 查到这条数据。

系统如何找到某个row key (或者某个 row key range)所在的region
bigtable 使用三层类似B+树的结构来保存region位置。
第一层是保存zookeeper里面的文件,它持有root region的位置。
第二层root region是.META.表的第一个region其中保存了.META.表其它region的位置。通过root region,我们就可以访问.META.表的数据。
.META.是第三层,它是一个特殊的表,保存了hbase中所有数据表的region 位置信息。

说明:
1 root region永远不会被split,保证了最需要三次跳转,就能定位到任意region 。
**2.**META.表每行保存一个region的位置信息,row key 采用表名+表的最后一行编码而成。
3 为了加快访问,.META.表的全部region都保存在内存中。
4 client会将查询过的位置信息保存缓存起来,缓存不会主动失效,因此如果client上的缓存全部失效,则需要进行最多6次网络来回,才能定位到正确的region(其中三次用来发现缓存失效,另外三次用来获取位置信息)。

1.1.4 读写过程

1、读请求过程:
1 客户端通过zookeeper以及root表和meta表找到目标数据所在的regionserver
2 联系regionserver查询目标数据
3 regionserver定位到目标数据所在的region,发出查询请求
4 region先在memstore中查找,命中则返回
5 如果在memstore中找不到,则在storefile中扫描(可能会扫描到很多的storefile—-bloomfilter)

2、写请求过程:
1 client向region server提交写请求
2 region server找到目标region
3 region检查数据是否与schema一致
4 如果客户端没有指定版本,则获取当前系统时间作为数据版本
5 将更新写入WAL log
6 将更新写入Memstore
7 判断Memstore的是否需要flush为Store文件。

细节描述:
hbase使用MemStore和StoreFile存储对表的更新。
数据在更新时首先写入Log(WAL log)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并 且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时,系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了。
当系统出现意外时,可能导致内存(MemStore)中的数据丢失,此时使用Log(WAL log)来恢复checkpoint之后的数据。

StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(minor_compact, major_compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对 StoreFile进行split,等分为两个StoreFile。
由于对表的更新是不断追加的,compact时,需要访问Store中全部的 StoreFile和MemStore,将他们按row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,合并的过程还是比较快。

1.1.5 Region管理

(1) region分配
任何时刻,一个region只能分配给一个region server。master记录了当前有哪些可用的region server。以及当前哪些region分配给了哪些region server,哪些region还没有分配。当需要分配的新的region,并且有一个region server上有可用空间时,master就给这个region server发送一个装载请求,把region分配给这个region server。region server得到请求后,就开始对此region提供服务。

(2) region server上线
master使用zookeeper来跟踪region server状态。当某个region server启动时,会首先在zookeeper上的server目录下建立代表自己的znode。由于master订阅了server目录上的变更消息,当server目录下的文件出现新增或删除操作时,master可以得到来自zookeeper的实时通知。因此一旦region server上线,master能马上得到消息。

(3) region server下线
当region server下线时,它和zookeeper的会话断开,zookeeper而自动释放代表这台server的文件上的独占锁。master就可以确定:
1 region server和zookeeper之间的网络断开了。
2 region server挂了。
无论哪种情况,region server都无法继续为它的region提供服务了,此时master会删除server目录下代表这台region server的znode数据,并将这台region server的region分配给其它还活着的同志。

1.1.6 Master工作机制

 master上线
master启动进行以下步骤:
1 从zookeeper上获取唯一一个代表active master的锁,用来阻止其它master成为master。
2 扫描zookeeper上的server父节点,获得当前可用的region server列表。
3 和每个region server通信,获得当前已分配的region和region server的对应关系。
4 扫描.META.region的集合,计算得到当前还未分配的region,将他们放入待分配region列表。

 master下线
由于master只维护表和region的元数据,而不参与表数据IO的过程,master下线仅导致所有元数据的修改被冻结(无法创建删除表,无法修改表的schema,无法进行region的负载均衡,无法处理region 上下线,无法进行region的合并,唯一例外的是region的split可以正常进行,因为只有region server参与),表的数据读写还可以正常进行。因此master下线短时间内对整个hbase集群没有影响。
从上线过程可以看到,master保存的信息全是可以冗余信息(都可以从系统其它地方收集到或者计算出来)
因此,一般hbase集群中总是有一个master在提供服务,还有一个以上的‘master’在等待时机抢占它的位置。

动手练习(增删改查)


推荐阅读
  • 深入理解Kafka架构
    本文将详细介绍Kafka的内部工作机制,包括其工作流程、文件存储机制、生产者与消费者的具体实现,以及如何通过高效读写技术和Zookeeper支持来确保系统的高性能和稳定性。 ... [详细]
  • MQTT技术周报:硬件连接与协议解析
    本周开发笔记重点介绍了在新项目中使用MQTT协议进行硬件连接的技术细节,涵盖其特性、原理及实现步骤。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 掌握远程执行Linux脚本和命令的技巧
    本文将详细介绍如何利用Python的Paramiko库实现远程执行Linux脚本和命令,帮助读者快速掌握这一实用技能。通过具体的示例和详尽的解释,让初学者也能轻松上手。 ... [详细]
  • 本文探讨了在 OpenStack 环境中使用虚拟机部署 Ceph 集群后,外部服务器通过浮动 IP 无法访问该集群的问题,并提供了详细的解决方案。 ... [详细]
  • ZooKeeper集群脑裂问题及其解决方案
    本文深入探讨了ZooKeeper集群中可能出现的脑裂问题,分析其成因,并提供了多种有效的解决方案,确保集群在高可用性环境下的稳定运行。 ... [详细]
  • 本文将详细介绍如何在ThinkPHP6框架中实现多数据库的部署,包括读写分离的策略,以及如何通过负载均衡和MySQL同步技术优化数据库性能。 ... [详细]
  • Spring Cloud因其强大的功能和灵活性,被誉为开发分布式系统的‘一站式’解决方案。它不仅简化了分布式系统中的常见模式实现,还被广泛应用于企业级生产环境中。本书内容详实,覆盖了从微服务基础到Spring Cloud的高级应用,适合各层次的开发者。 ... [详细]
  • window下kafka的安装以及测试
    目录一、安装JDK(需要安装依赖javaJDK)二、安装Kafka三、测试参考在Windows系统上安装消息队列kafka一、安装JDKÿ ... [详细]
  • Zookeeper面试常见问题解析
    本文详细介绍了Zookeeper中的ZAB协议、节点类型、ACL权限控制机制、角色分工、工作状态、Watch机制、常用客户端、分布式锁实现、默认通信框架以及消息广播和领导选举的流程。 ... [详细]
  • 本文提供了一套实用的方法论,旨在帮助开发者构建能够应对高并发请求且易于扩展的Web服务。内容涵盖了服务器架构、数据库管理、缓存策略以及异步处理等多个方面。 ... [详细]
  • 本文详细探讨了虚拟化的基本概念,包括服务器虚拟化、网络虚拟化及其在云计算环境中的应用。特别强调了SDN技术在网络虚拟化和云计算中的关键作用,以及网络虚拟化技术如何提升资源利用效率和管理灵活性。 ... [详细]
  • 本文详细介绍了 Apache ZooKeeper 的 FileTxnLog 类中的 setPreallocSize 方法,并提供了多个实际应用中的代码示例。通过这些示例,读者可以更好地理解如何在不同场景下合理设置日志文件的预分配大小。 ... [详细]
  • 1整合dubbo1.1e3-manager-Service1.1.1pom.xml排除jar在e3-manager-Service工程中添加dubbo依赖的jar包。 ... [详细]
  • 历经两个月,他成功斩获阿里巴巴Offer
    经过两个月的努力,一位普通的双非本科毕业生最终成功获得了阿里巴巴的录用通知。 ... [详细]
author-avatar
爱心永溢真情永远
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有