热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hbase安装包_HBase集成Phoenix构建二级索引实践

Phoenix在HBase生态系统中占据了非常重要的地位,本文主要包括以下几方面内容:Phoenix介绍CDHHBase集成Phoenix使用Phoen

Phoenix 在 HBase 生态系统中占据了非常重要的地位,本文主要包括以下几方面内容:

  • Phoenix 介绍

  • CDH HBase 集成 Phoenix

  • 使用 Phoenix 创建 HBase 二级索引

  • Phoenix 索引类型介绍

Phoenix 介绍

Phoenix 是构建在 HBase 之上的高效的 SQL 引擎,同时具备 OLTP 和 OLAP 能力,作为 HBase 生态系统中非常重要的组件,重点的特性包括:

  • 底层存储基于 HBase,并提供一套标准的 JDBC API 作为 HBase SQL 层;

  • 支持标准 SQL,以及完整 ACID 事务特性;

  • 为 HBase 提供了二级索引解决方案;

此外,Phoenix 还和很多其他组件做了集成,比如 Spark、Hive、Flume 等。Phoenix 与 HBase 集成,其最大的特点就是为 HBase 提供了二级索引,后文会重点介绍。下图是 Phoenix 的基本架构:

ba2820d8bf92d32ffbb262e21e2449af.png

CDH HBase 集成 Phoenix

版本说明

  • http://phoenix.apache.org/download.html;

  • 高版本 CDH 安装 Phoenix 可以参考:产品 | Cloudera正式宣布在CDH中支持Apache Phoenix

  • http://archive.cloudera.com/cloudera-labs/phoenix/parcels/

  • 此外,用户还可以自行编译适合自己的Phoenix版本。

安装

首先到官网下载适合自己环境的 Parcel 安装包,并发布到 httpd 服务:

[root@hadoop-01 /var/www/html/phoenix/4.14.0]$ ll
total 300524
-rw-r--r-- 1 root root 307722240 Feb 3 19:30 APACHE_PHOENIX-4.14.0-cdh5.11.2.p0.3-el7.parcel
-rw-r--r-- 1 root root 178 Feb 3 19:28 APACHE_PHOENIX-4.14.0-cdh5.11.2.p0.3-el7.parcel.sha512
-rw-r--r-- 1 root root 5081 Feb 3 19:30 manifest.json

(可左右滑动)

0af2f1cae3f1fce5824c4cf0c9917764.png然后配置成 CDH 远程 Parcel 存储库 url:17dba8aa3b9545459866f3e78a19f3ba.png接下来下载,分配,激活完成安装即可。

配置

安装完 Phoenix 后,需要做一些必要配置才能使用 Phoenix,CDH HBase 配置界面配置如下两处:

1. hbase-site.xml 的 HBase 服务高级配置代码段(安全阀)

2. hbase-site.xml 的 HBase 客户端高级配置代码段(安全阀)

添加如下参数配置:


hbase.regionserver.wal.codecorg.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec


phoenix.schema.isNamespaceMappingEnabledtrue
phoenix.schema.mapSystemTablesToNamespacetrue

(可左右滑动)

然后,按照提示重启HBase服务并重新部署客户端配置即可。

命令行使用

CDH 安装后环境变量都已经配置好了,可以直接使用 phoenix-sqlline.py,如下:

[root@hadoop-01 ~]$ phoenix-
phoenix-performance.py phoenix-psql.py phoenix-sqlline.py phoenix-utils.py

(可左右滑动)

执行 phoenix-sqlline.py 初始化使用 Phoenix:

9f60f5987e77b1fc67d563b47597a703.png

然后我们查看下 HBase 中 Phoenix 的系统表:

hbase(main):003:0> list
SYSTEM:CATALOG
SYSTEM:FUNCTION
SYSTEM:LOG
SYSTEM:MUTEX
SYSTEM:SEQUENCE
SYSTEM:STATS

(可左右滑动)

接下来看一下如何在 Phoenix 中创建 HBase 表的二级索引。

使用 Phoenix 创建 HBase 二级索引

映射已存在的 HBase 表

1. 查看 HBase 表

当前 HBase 中存在一张操作日志表 ns1000:operate_log,数据量近280w,包括14个字段,如下:

hbase(main):017:0> count 'ns1000:operate_log', INTERVAL => 100000
...
2799827 row(s) in 173.4200 seconds

=> 2799827
hbase(main):018:0> scan 'ns1000:operate_log', LIMIT => 1
ROW COLUMN+CELL
x00x00x12x12x00x00x00x0D1538216707720 column=f:appVersion, timestamp=1538216707892, value=2.22.0
x00x00x12x12x00x00x00x0D1538216707720 column=f:area, timestamp=1538216707892, value=xE6xB1x9FxE5x8Cx97xE5x8CxBA
x00x00x12x12x00x00x00x0D1538216707720 column=f:authId, timestamp=1538216707892, value=
x00x00x12x12x00x00x00x0D1538216707720 column=f:city, timestamp=1538216707892, value=xE9x87x8DxE5xBAx86xE5xB8x82
x00x00x12x12x00x00x00x0D1538216707720 column=f:imei, timestamp=1538216707892, value=AF36147F-8106-47F0-B58F-A3FB75DBE325
x00x00x12x12x00x00x00x0D1538216707720 column=f:lat, timestamp=1538216707892, value=29.577587127685547
x00x00x12x12x00x00x00x0D1538216707720 column=f:lon, timestamp=1538216707892, value=106.50493621826172
x00x00x12x12x00x00x00x0D1538216707720 column=f:memberType, timestamp=1538216707892, value=0
x00x00x12x12x00x00x00x0D1538216707720 column=f:mobileManufacturer, timestamp=1538216707892, value=iPhone
x00x00x12x12x00x00x00x0D1538216707720 column=f:mobileModel, timestamp=1538216707892, value=iPhone 6 Plus
x00x00x12x12x00x00x00x0D1538216707720 column=f:province, timestamp=1538216707892, value=xE9x87x8DxE5xBAx86xE5xB8x82
x00x00x12x12x00x00x00x0D1538216707720 column=f:systemType, timestamp=1538216707892, value=1
x00x00x12x12x00x00x00x0D1538216707720 column=f:systemVersion, timestamp=1538216707892, value=12.0
x00x00x12x12x00x00x00x0D1538216707720 column=f:time, timestamp=1538216707892, value=1538216707720
1 row(s) in 0.0460 seconds

(可左右滑动)

2. Phoenix 中创建与 namespace 名称一致的 schema

0: jdbc:phoenix:> create schema if not exists "ns1000";
No rows affected (0.012 seconds)

(可左右滑动)

3. Phoenix 中创建视图,并查询数据及条数

0: jdbc:phoenix:> use "ns1000";
No rows affected (0.021 seconds)
0: jdbc:phoenix:> create view "operate_log"(
. . . . . . . . > "pk" varchar primary key,
. . . . . . . . > "f"."appVersion" varchar,
. . . . . . . . > "f"."city" varchar,
. . . . . . . . > "f"."lat" varchar,
. . . . . . . . > "f"."lon" varchar,
. . . . . . . . > "f"."memberType" varchar,
. . . . . . . . > "f"."time" varchar);
No rows affected (6.555 seconds)
0: jdbc:phoenix:> !tables
+------------+--------------+--------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+---------------+-----------------+------------+--------+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | TABLE_TYPE | REMARKS | TYPE_NAME | SELF_REFERENCING_COL_NAME | REF_GENERATION | INDEX_STATE | IMMUTABLE_ROWS | SALT_BUCKETS | MULTI_TENANT | VIEW_STATEMENT | VIEW_TYPE | INDEX_ |
+------------+--------------+--------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+---------------+-----------------+------------+--------+
| | SYSTEM | CATALOG | SYSTEM TABLE | | | | | | false | | false | | | |
| | SYSTEM | FUNCTION | SYSTEM TABLE | | | | | | false | | false | | | |
| | SYSTEM | LOG | SYSTEM TABLE | | | | | | true | 32 | false | | | |
| | SYSTEM | SEQUENCE | SYSTEM TABLE | | | | | | false | | false | | | |
| | SYSTEM | STATS | SYSTEM TABLE | | | | | | false | | false | | | |
| | ns1000 | operate_log | VIEW | | | | | | false | | false | | MAPPED | |
+------------+--------------+--------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+---------------+-----------------+------------+--------+
0: jdbc:phoenix:> !columns "operate_log";
+------------+--------------+--------------+--------------+------------+------------+--------------+----------------+-----------------+-----------------+-----------+----------+-------------+----------------+-------------------+--------+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | COLUMN_NAME | DATA_TYPE | TYPE_NAME | COLUMN_SIZE | BUFFER_LENGTH | DECIMAL_DIGITS | NUM_PREC_RADIX | ABLE | REMARKS | COLUMN_DEF | SQL_DATA_TYPE | SQL_DATETIME_SUB | CHAR_O |
+------------+--------------+--------------+--------------+------------+------------+--------------+----------------+-----------------+-----------------+-----------+----------+-------------+----------------+-------------------+--------+
| | ns1000 | operate_log | pk | 12 | VARCHAR | | | | | 0 | | | | | |
| | ns1000 | operate_log | appVersion | 12 | VARCHAR | | | | | 1 | | | | | |
| | ns1000 | operate_log | city | 12 | VARCHAR | | | | | 1 | | | | | |
| | ns1000 | operate_log | lat | 12 | VARCHAR | | | | | 1 | | | | | |
| | ns1000 | operate_log | lon | 12 | VARCHAR | | | | | 1 | | | | | |
| | ns1000 | operate_log | memberType | 12 | VARCHAR | | | | | 1 | | | | | |
| | ns1000 | operate_log | time | 12 | VARCHAR | | | | | 1 | | | | | |
+------------+--------------+--------------+--------------+------------+------------+--------------+----------------+-----------------+-----------------+-----------+----------+-------------+----------------+-------------------+--------+
0: jdbc:phoenix:> select * from "operate_log" limit 1;
+------------------------+-------------+-------+---------------------+---------------------+-------------+----------------+
| pk | appVersion | city | lat | lon | memberType | time |
+------------------------+-------------+-------+---------------------+---------------------+-------------+----------------+
1538216707720 | 2.22.0 | 重庆市 | 29.577587127685547 | 106.50493621826172 | 0 | 1538216707720 |
+------------------------+-------------+-------+---------------------+---------------------+-------------+----------------+
1 row selected (0.115 seconds)
0: jdbc:phoenix:> select count(*) from "operate_log";
+-----------+
| COUNT(1) |
+-----------+
| 2799827 |
+-----------+
1 row selected (3.848 seconds)

(可左右滑动)

4. 根据字段 time 进行时间范围查询:

0: jdbc:phoenix:> select count(*) from "operate_log" where "f"."time" between '1538216707720' and '1538223834000';
+-----------+
| COUNT(1) |
+-----------+
| 5883 |
+-----------+
1 row selected (5.241 seconds)

(可左右滑动)

这种情况下,基本上查询都在 5s 左右。

这里还要有两点说明:

  • Phoenix 会自动将表名、字段名都转成大写,如果要区分大小写使用双引号括起来即可。

  • 这里我们创建的是视图,相当于外部表,也可以 create table 创建表,视图的特点是删除时不会删除 HBase 表,但是视图创建的二级索引不会自动更新,如果要实时更新的话,只能使用 create table,然后通过 Phoenix jdbc 的方式写入数据,只有通过 Phoenix 写,然后用 Phoenix 实现的协处理器才能实现实时更新的索引。

使用 Phoenix 创建二级索引

1. 使用 Phoenix 对 time 字段创建索引

0: jdbc:phoenix:> create index index_operate_log_time on "operate_log" ("f"."time");
2,799,827 rows affected (95.814 seconds)

(可左右滑动)

2. 再次根据 time 字段做范围查询

00: jdbc:phoenix:> select count(*) from "operate_log" where "f"."time" between '1538216707720' and '1538223834000';
+-----------+
| COUNT(1) |
+-----------+
| 5883 |
+-----------+
1 row selected (0.049 seconds)

(可左右滑动)

这里基本上查询都在 50 ms 左右。这就是通过 Phoenix 的二级索引带来的性能提升。

Phoenix 索引类型介绍

Phoenix 提供了多种索引类型,包括覆盖索引、函数索引,以及全局索引与本地索引等,具体介绍如下。

Covered Indexes(覆盖索引)

覆盖索引是在索引表中直接存储某些常用字段,当查询时所有字段仅涉及索引表中包含的字段时,则无需再在基于 rowkey 索引的数据表中查询,提高了查询的效率。

比如,我们在operate_log 表 "f"."time" 列上创建一个索引,并在索引中包含 "f"."lat



推荐阅读
  • 我们在之前的文章中已经初步介绍了Cloudera。hadoop基础----hadoop实战(零)-----hadoop的平台版本选择从版本选择这篇文章中我们了解到除了hadoop官方版本外很多 ... [详细]
  • 离线安装Grafana Cloudera Manager插件并监控CDH集群
    本文详细介绍如何离线安装Cloudera Manager (CM) 插件,并通过Grafana监控CDH集群的健康状况和资源使用情况。该插件利用CM提供的API接口进行数据获取和展示。 ... [详细]
  • 本文详细探讨了如何在 SparkSQL 中创建 DataFrame,涵盖了从基本概念到具体实践的各种方法。作为持续学习的一部分,本文将持续更新以提供最新信息。 ... [详细]
  • ArchSummit深圳2014将于7月18日拉开帷幕,所有讲师已确认,涵盖9个热门话题,共36场精彩报告。InfoQ中文站提供了详细的讲师和报告列表。 ... [详细]
  • Java虚拟机及其发展历程
    Java虚拟机(JVM)是每个Java开发者日常工作中不可或缺的一部分,但其背后的运作机制却往往显得神秘莫测。本文将探讨Java及其虚拟机的发展历程,帮助读者深入了解这一关键技术。 ... [详细]
  • 龙蜥社区开发者访谈:技术生涯的三次蜕变 | 第3期
    龙蜥社区的开发者们通过自己的实践和经验,推动着开源技术的发展。本期「龙蜥开发者说」聚焦于一位资深开发者的三次技术转型,分享他在龙蜥社区的成长故事。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • V8不仅是一款著名的八缸发动机,广泛应用于道奇Charger、宾利Continental GT和BossHoss摩托车中。自2008年以来,作为Chromium项目的一部分,V8 JavaScript引擎在性能优化和技术创新方面取得了显著进展。该引擎通过先进的编译技术和高效的垃圾回收机制,显著提升了JavaScript的执行效率,为现代Web应用提供了强大的支持。持续的优化和创新使得V8在处理复杂计算和大规模数据时表现更加出色,成为众多开发者和企业的首选。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • HBase Java API 进阶:过滤器详解与应用实例
    本文详细探讨了HBase 1.2.6版本中Java API的高级应用,重点介绍了过滤器的使用方法和实际案例。首先,文章对几种常见的HBase过滤器进行了概述,包括列前缀过滤器(ColumnPrefixFilter)和时间戳过滤器(TimestampsFilter)。此外,还详细讲解了分页过滤器(PageFilter)的实现原理及其在大数据查询中的应用场景。通过具体的代码示例,读者可以更好地理解和掌握这些过滤器的使用技巧,从而提高数据处理的效率和灵活性。 ... [详细]
  • 在Linux系统中,原本已安装了多个版本的Python 2,并且还安装了Anaconda,其中包含了Python 3。本文详细介绍了如何通过配置环境变量,使系统默认使用指定版本的Python,以便在不同版本之间轻松切换。此外,文章还提供了具体的实践步骤和注意事项,帮助用户高效地管理和使用不同版本的Python环境。 ... [详细]
  • 本文详细介绍了 Linux 系统中用户、组和文件权限的设置方法,包括基本权限(读、写、执行)、特殊权限(SUID、SGID、Sticky Bit)以及相关配置文件的使用。 ... [详细]
  • HBase 数据复制与灾备同步策略
    本文探讨了HBase在企业级应用中的数据复制与灾备同步解决方案,包括存量数据迁移及增量数据实时同步的方法。 ... [详细]
author-avatar
川川shilohjr_993
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有