热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

hanlp的基本使用

hanlp拥有:中文分词、命名实体识别、摘要关键字、依存句法分析、简繁拼音转换、智能推荐。这里主要介绍一下hanlp的中文分词、命名实体识别、依存句法分析,这里就不介绍具体的hanlp的安装了,百度

 hanlp拥有:中文分词、命名实体识别、摘要关键字、依存句法分析、简繁拼音转换、智能推荐。

这里主要介绍一下hanlp的中文分词、命名实体识别、依存句法分析,这里就不介绍具体的hanlp的安装了,百度教程很多,可以看这里:http://www.hankcs.com/nlp/python-calls-hanlp.html,里面也有相关的一些介绍。

我以前还使用过jieba分词和LTP,综合来说,LTP是做的相对要好一点,特别是中文处理这一块,但是它的最大缺点是不开源,而hanlp功能更齐全而且开源,更加有利于大家的项目开发的使用。

首先使用hanlp对中文进行处理的前提是大家已经安装好了hanlp:

第一将这几个放在你的项目下,

然后点击hanlp.propertiess,更改保证你的data数据在这个目录之下

下面贴上一些处理自然语言的基本方法(以下代码并非原创,来自于百度上的大神):

#-*- coding:utf-8 -*-
from jpype import *

startJVM(getDefaultJVMPath(),
"-Djava.class.path=D:\python_projects\zhengzebiaodashi\hanlp\hanlp-1.3.4.jar;D:\python_projects\zhengzebiaodashi\hanlp",
"-Xms1g",
"-Xmx1g") # 启动JVM,Linux需替换分号;为冒号:

print("=" * 30 + "HanLP分词" + "=" * 30)
HanLP
= JClass('com.hankcs.hanlp.HanLP')
# 中文分词
print(HanLP.segment('你好,欢迎在Python中调用HanLP的API'))
print("-" * 70)

print("=" * 30 + "标准分词" + "=" * 30)
StandardTokenizer
= JClass('com.hankcs.hanlp.tokenizer.StandardTokenizer')
print(StandardTokenizer.segment('你好,欢迎在Python中调用HanLP的API'))
print("-" * 70)

# NLP分词NLPTokenizer会执行全部命名实体识别和词性标注
print("=" * 30 + "NLP分词" + "=" * 30)
NLPTokenizer
= JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer')
print(NLPTokenizer.segment('中国科学院计算技术研究所的宗成庆教授正在教授自然语言处理课程'))
print("-" * 70)

print("=" * 30 + "索引分词" + "=" * 30)
IndexTokenizer
= JClass('com.hankcs.hanlp.tokenizer.IndexTokenizer')
termList
= IndexTokenizer.segment("主副食品");
for term in termList:
print(str(term) + " [" + str(term.offset) + ":" + str(term.offset + len(term.word)) + "]")
print("-" * 70)

print("=" * 30 + " N-最短路径分词" + "=" * 30)
# CRFSegment = JClass('com.hankcs.hanlp.seg.CRF.CRFSegment')
#
segment=CRFSegment()
#
testCase ="今天,刘志军案的关键人物,山西女商人丁书苗在市二中院出庭受审。"
#
print(segment.seg("你看过穆赫兰道吗"))
print("-" * 70)

print("=" * 30 + " CRF分词" + "=" * 30)
print("-" * 70)

print("=" * 30 + " 极速词典分词" + "=" * 30)
SpeedTokenizer
= JClass('com.hankcs.hanlp.tokenizer.SpeedTokenizer')
print(NLPTokenizer.segment('江西鄱阳湖干枯,中国最大淡水湖变成大草原'))
print("-" * 70)

print("=" * 30 + " 自定义分词" + "=" * 30)
CustomDictionary
= JClass('com.hankcs.hanlp.dictionary.CustomDictionary')
CustomDictionary.add(
'攻城狮')
CustomDictionary.add(
'单身狗')
HanLP
= JClass('com.hankcs.hanlp.HanLP')
print(HanLP.segment('攻城狮逆袭单身狗,迎娶白富美,走上人生巅峰'))
print("-" * 70)

print("=" * 20 + "命名实体识别与词性标注" + "=" * 30)
NLPTokenizer
= JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer')
print(NLPTokenizer.segment('中国科学院计算技术研究所的宗成庆教授正在教授自然语言处理课程'))
print("-" * 70)

document
= "水利部水资源司司长陈明忠9月29日在国务院新闻办举行的新闻发布会上透露," \
"根据刚刚完成了水资源管理制度的考核,有部分省接近了红线的指标," \
"有部分省超过红线的指标。对一些超过红线的地方,陈明忠表示,对一些取用水项目进行区域的限批," \
"严格地进行水资源论证和取水许可的批准。"
print("=" * 30 + "关键词提取" + "=" * 30)
print(HanLP.extractKeyword(document, 8))
print("-" * 70)

print("=" * 30 + "自动摘要" + "=" * 30)
print(HanLP.extractSummary(document, 3))
print("-" * 70)

# print("="*30+"地名识别"+"="*30)
#
HanLP = JClass('com.hankcs.hanlp.HanLP')
#
segment = HanLP.newSegment().enablePlaceRecognize(true)
#
testCase=["武胜县新学乡政府大楼门前锣鼓喧天",
#
"蓝翔给宁夏固原市彭阳县红河镇黑牛沟村捐赠了挖掘机"]
#
for sentence in testCase :
#
print(HanLP.segment(sentence))
#
print("-"*70)

# print("="*30+"依存句法分析"+"="*30)
#
print(HanLP.parseDependency("徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。"))
#
print("-"*70)




text
= r"算法工程师\n 算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法工程师就是利用算法处理事物的人。\n \n 1职位简介\n 算法工程师是一个非常高端的职位;\n 专业要求:计算机、电子、通信、数学等相关专业;\n 学历要求:本科及其以上的学历,大多数是硕士学历及其以上;\n 语言要求:英语要求是熟练,基本上能阅读国外专业书刊;\n 必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。\n\n2研究方向\n 视频算法工程师、图像处理算法工程师、音频算法工程师 通信基带算法工程师\n \n 3目前国内外状况\n 目前国内从事算法研究的工程师不少,但是高级算法工程师却很少,是一个非常紧缺的专业工程师。算法工程师根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。\n 在计算机音视频和图形图像技术等二维信息算法处理方面目前比较先进的视频处理算法:机器视觉成为此类算法研究的核心;另外还有2D转3D算法(2D-to-3D conversion),去隔行算法(de-interlacing),运动估计运动补偿算法(Motion estimation/Motion Compensation),去噪算法(Noise Reduction),缩放算法(scaling),锐化处理算法(Sharpness),超分辨率算法(Super Resolution),手势识别(gesture recognition),人脸识别(face recognition)。\n 在通信物理层等一维信息领域目前常用的算法:无线领域的RRM、RTT,传送领域的调制解调、信道均衡、信号检测、网络优化、信号分解等。\n 另外数据挖掘、互联网搜索算法也成为当今的热门方向。\n"
print("=" * 30 + "短语提取" + "=" * 30)

print(HanLP.extractPhrase(text, 10))
print("-" * 70)

shutdownJVM()

但是我最近需要自定义一个词典,该怎么办呢,继续往下看:

第一:以**.txt命名自己的词典

第二:将其加入到hanlp.propertiess中,我加入的是poems.txt,如下

第三:删除CustomDictionary.txt.bin文件,然后运行代码,记住要等程序运行完哦,我加入的词典有47万行,运行了14分钟,不过后面运行就快了

# -*- coding:utf-8 -*-
from jpype import *
import time
i
=time.time()
startJVM(getDefaultJVMPath(),
"-Djava.class.path=D:\python_projects\zhengzebiaodashi\hanlp\hanlp-1.3.4.jar;D:\python_projects\zhengzebiaodashi\hanlp",
"-Xms1g",
"-Xmx1g") # 启动JVM,Linux需替换分号;为冒号:
HanLP = JClass('com.hankcs.hanlp.HanLP')
CustomDictionary
= JClass('com.hankcs.hanlp.dictionary.CustomDictionary')
list
=HanLP.parseDependency("李白的诗有哪些?")
print list
j
=time.time()
print j-ishutdownJVM()

1 李白 李白 b b _ 3 定中关系 _ _
2的的uude1_1右附加关系__
3诗诗nn_4主谓关系__
4有有vvyou_0核心关系__
5哪些哪些rry_4动宾关系__
6??wpw_4标点符号__

2.16999983788

 

大家有没有发现,李白的词性是b,这是什么鬼,其实这是我自己词典中添加的:李白 b 200(词  词性   权值)

如果大家觉得有些词典不需要,可以将其路径删除,如下:

 

本人也是初学者,如果有写错的地方,希望大家纠正。


推荐阅读
  • 使用jQuery与百度地图API实现地址转经纬度功能
    本文详细介绍了如何利用jQuery和百度地图API将地址转换为经纬度,包括申请API密钥、页面构建及核心代码实现。 ... [详细]
  • 详解MyBatis二级缓存的启用与配置
    本文深入探讨了MyBatis二级缓存的启用方法及其配置细节,通过具体的代码实例进行说明,有助于开发者更好地理解和应用这一特性,提升应用程序的性能。 ... [详细]
  • 本文探讨了Android系统中联系人数据库的设计,特别是AbstractContactsProvider类的作用与实现。文章提供了对源代码的详细分析,并解释了该类如何支持跨数据库操作及事务处理。源代码可从官方Android网站下载。 ... [详细]
  • selenium通过JS语法操作页面元素
    做过web测试的小伙伴们都知道,web元素现在很多是JS写的,那么既然是JS写的,可以通过JS语言去操作页面,来帮助我们操作一些selenium不能覆盖的功能。问题来了我们能否通过 ... [详细]
  • Mysqlcheck作为MySQL提供的一个实用工具,主要用于数据库表的维护工作,包括检查、分析、修复及优化等操作。本文将详细介绍如何使用Mysqlcheck工具,并提供一些实践建议。 ... [详细]
  • 本文介绍了两个重要的Node.js库——cache-content-type和mime-types,它们在处理HTTP响应头时非常有用。cache-content-type是基于mime-types构建的,并且实现了缓存机制以提高性能。 ... [详细]
  • 本文详细介绍了如何在 EasyUI 框架中实现 DataGrid 组件的分页功能,包括配置方法和常见问题的解决方案。 ... [详细]
  • Node.js 断点调试指南
    本文详细介绍了利用Google Chrome DevTools和Visual Studio Code两种工具进行Node.js应用的断点调试技巧。 ... [详细]
  • 本文详细介绍了如何处理Oracle数据库中的ORA-00227错误,即控制文件中检测到损坏块的问题,并提供了具体的解决方案。 ... [详细]
  • 本文详细介绍了Java API中文文档的位置、用途及其查看方法,帮助开发者更高效地利用这一资源。 ... [详细]
  • SpringBoot底层注解用法及原理
    2.1、组件添加1、Configuration基本使用Full模式与Lite模式示例最佳实战配置类组件之间无依赖关系用Lite模式加速容器启动过程,减少判断配置类组 ... [详细]
  • 前端技术分享——利用Canvas绘制鼠标轨迹
    作为一名前端开发者,我已经积累了Vue、React、正则表达式、算法以及小程序等方面的技能,但Canvas一直是我的盲区。因此,我在2018年为自己设定了一个新的学习目标:掌握Canvas,特别是如何使用它来创建CSS3难以实现的动态效果。 ... [详细]
  • 本文探讨了一个Web工程项目的需求,即允许用户随时添加定时任务,并通过Quartz框架实现这些任务的自动化调度。文章将介绍如何设计任务表以存储任务信息和执行周期,以及如何通过一个定期扫描机制自动识别并加载新任务到调度系统中。 ... [详细]
  • 本文将详细探讨 Python 编程语言中 sys.argv 的使用方法及其重要性。通过实际案例,我们将了解如何在命令行环境中传递参数给 Python 脚本,并分析这些参数是如何被处理和使用的。 ... [详细]
  • 近期尝试从www.hub.sciverse.com网站通过编程手段获取数据时遇到问题,起初尝试使用WebBrowser控件进行数据抓取,但发现使用GET方法翻页时,返回的HTML代码始终相同。进一步探究后了解到,该网站的数据是通过Ajax异步加载的,可通过HTTP查看详细的JSON响应。 ... [详细]
author-avatar
东隅海纳堂_684
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有