对于开源的东东,尤其是刚出来不久,我认为最好的学习方式就是能够看源代码和doc,測试它的样例
为了方便查看源代码,关联导入源代码的项目
先前的项目导入源代码是关联了源代码文件
block数据块,在配置文件hdfs-default.xml中能够查看到,记住要改动不是在这里
block文件存储块是最主要的单位
查看block存放位置,配置文件里查看
假设文件大于64M会占两个块,meta文件是校验文件,第二个文件大于64M,删除文件后,则相应block不在
datanode存放文件,一个文件能够存放在不同机器上datanode
mapreduce本身有默认的类,当什么都不写的时候,原样输出
package com.kane.mr.minidefault;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class TestDefault {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
//GenericOptionsParser辅助工具类
//String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
String[] otherArgs = {"hdfs://centos:9000/kane/mini.txt","hdfs://centos:9000/kane/output"};
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(TestDefault.class);
//中间的内容省略就採用默认的类操作,应该是原样输出
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//输入參数,相应hadoop jar 相应类执行时在后面加的第一个參数
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//输出參数
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
然后到处该类为jar包,放到hadoop文件下,执行
接下来自己创建须要mr执行的源文件,并导入hdfs中
当我们执行hadoop命令执行时 可能出异常,由于你编写代码的jdk可能和hadoop用到的JVM不匹配
解决的办法事实上非常easy,仅仅要更改这个选项即可了。详细过程例如以下:
----------------------------------------------------------
1、右键点击project文件,选择属性(properties),
2、在属性窗体中选择 Build-->Java,在右边的选项中有四个下拉框,就能够看到编译选项了,
3、当中Compiler和Debug Option能够不用管,仅仅在Languege features和Target VM中选择对应的JDK版本号就能够了,然后确定,一切OK。
附件中是配置的图片。
-----------------------------------------------------------
假设在Target VM中选择了All Java SDKs,那么你的class文件在使用JDK1.1的VM上都能够执行(Jbuilder2006帮助中是这么说的,预计没几个人的机子上还在用JDK1.1吧 :-)
默认的mr程序原样输出
測试wordcount
package com.kane.mr;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MapperClass extends Mapper{
public Text keyText=new Text("key");
public IntWritable intValue=new IntWritable(1);
@Override
protected void map(Object key, Text value,
Context context)
throws IOException, InterruptedException {
//获取输入的值
String str=value.toString();
//用什么分隔键值,默认空格或\t 或\n
StringTokenizer sTokenizer=new StringTokenizer(str);
//循环输出,假如是My name is kane 则分四次输出四个单词
while (sTokenizer.hasMoreElements()) {
Object object = (Object) sTokenizer.nextElement();
//这里每一个单词能够看做一个key
keyText.set(str);
context.write(keyText, intValue);//匹配一个就加value比如(“My”,1)
}
}
}
package com.kane.mr;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
//map传来的键值就是text 和 intwritable
public class ReducerClass extends Reducer
public IntWritable intValue= new IntWritable(0);
@Override
protected void reduce(Text key, Iterable
Context context)
throws IOException, InterruptedException {
int sum=0;
while (values.iterator().hasNext()) {
sum+=values.iterator().next().get();
}
//这里值用intwritable输出是由于非常多情况下一个mapreduce的输出是下一个mapreduce的输入
intValue.set(sum);
context.write(key, intValue);
}
}
package com.kane.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCounter {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCounter.class);
job.setMapperClass(MapperClass.class);
//job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(ReducerClass.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//输入參数,相应hadoop jar 相应类执行时在后面加的第一个參数
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//输出參数
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}