分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
<pre name="code" class="html">grok:解析任意文本并构造它:Grok 是当前最好的方式在logstash 解析蹩脚的非结构化日志数据 到一些结构化的可查询的。这个工具是完美的对于syslog logs, apache和其他webserver logs,mysqllogs,在一般情况下,任何日志格式通常对于人是友好的而不是对于电脑Logstash 有120种模式默认,你可以找到它们在:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns. Grok Basics:Grok 通过结合文本模式来匹配你的日志语法对于一个grok 是 %{SYNTAX:SEMANTIC}语法是 模式的名字会匹配你的文本,比如,3.44 会通过NUMBER 模式匹配和55.3.244.1 通过IP模式匹配。语法是你如何匹配:SEMANTIC (语义)是标识 你给到一块文本被匹配。比如,3.44 可能是一个一个事件的持续事件,因此你可以简单的调用它。此外, 一个字符串 55.3.244.1 可能识别客户端发出的请求。在上述例子中,你的grok filter 可以看起来像这样:%{NUMBER:duration} %{IP:client}你可以添加一个数据类型转换成你的grok 模式。默认的 所有的语义都保存作为字符串.如果你希望 转换一个语义的数据类型,比如改变一个字符串为一个整型 然后将其后缀为目标数据类型。比如 %{NUMBER:num:int} 会转换num语义从一个字符串到一个整型,当前只支持转换是int和float例子: 这个质疑的语法和语义,我们可以把有用的字段从一个简单的日志像这个虚构的http 请求日志:55.3.244.1 GET /index.html 15824 0.043匹配模式:%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}{ "client": [ "55.3.244.1" ], "method": [ "GET" ], "request": [ "/index.html" ], "bytes": [ "15824" ], "duration": [ "0.043" ]}正则表达式:Grok 坐在正则表达式之上,因此很多的正则表达式也是正确的在grok里。正则表达式库是Oniguruma,你可以看到完整的支持的正则表达式的语言在Oniguruma 网站自定义 模式:有时候logstash没有你需要的模式,你有几个选项:第一,你可以使用Oniguruma 语法用于命名捕获 让你匹配一个文件的片段,保存作为字段(?<field_name>the pattern here)/********55.3.244.1 GET /index.html 15824 0.043(?<field_name>\S+)输出:{ "field_name": [ "55.3.244.1" ]}(?<field_name>\S+\s+)输出:多了个空格{ "field_name": [ "55.3.244.1 " ]}(?<field_name>\S+\s+\S+)输出:{ "field_name": [ "55.3.244.1 GET" ]}例如, 后缀日志有一个队列id 是10或者11 个16进制字符,你可以捕获像这样:(?<queue_id>[0-9A-F]{10,11})d4111111112表达式:(?<queue_id>[0-9A-F]{10,11})输出:{ "queue_id": [ "4111111112" ]}或者,你也可以创建一个自定义模式的文件:创建一个目录叫做patterns 里面有个文件叫做extra(文件名不重要,但是名字得对你有意义)在这个文件中,写pattern 你需要的作为pattern名字,一个空格,然后正则用于哪个模式例如: 后缀队列id例子:# contents of ./patterns/postfix:POSTFIX_QUEUEID [0-9A-F]{10,11}Jan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>filter { grok { patterns_dir => ["./patterns"] match => { "message" => "%{SYSLOGBASE} %{POSTFIX_QUEUEID:queue_id}: %{GREEDYDATA:syslog_message}" } }}上面的会被匹配,结果是下面的字段:timestamp: Jan 1 06:25:43logsource: mailserver14program: postfix/cleanuppid: 21403queue_id: BEF25A72965syslog_message: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>timestamp, logsource, program, 和pid 来自SYSLOGBASE 模式本身定义了一些模式/*******************zjtest7-frontend:/usr/local/logstash-2.3.4/config# pwd/usr/local/logstash-2.3.4/configzjtest7-frontend:/usr/local/logstash-2.3.4/config# ls -lr patterns/total 4-rw-r--r-- 1 root root 32 Aug 30 13:33 postfixzjtest7-frontend:/usr/local/logstash-2.3.4/config/patterns# cat postfix POSTFIX_QUEUEID [0-9A-F]{10,11}zjtest7-frontend:/usr/local/logstash-2.3.4/config# cat stdin.conf input { stdin { }} filter { grok { patterns_dir => ["./patterns"] match => { "message" => "%{SYSLOGBASE} %{POSTFIX_QUEUEID:queue_id}: %{GREEDYDATA:syslog_message}" } }}output { stdout { codec=>rubydebug{} } }zjtest7-frontend:/usr/local/logstash-2.3.4/config# ../bin/logstash -f stdin.conf Settings: Default pipeline workers: 1Pipeline main startedJan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>{ "message" => "Jan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>", "@version" => "1", "@timestamp" => "2016-08-30T05:34:11.849Z", "host" => "0.0.0.0", "timestamp" => "Jan 1 06:25:43", "logsource" => "mailserver14", "program" => "postfix/cleanup", "pid" => "21403", "queue_id" => "BEF25A72965", "syslog_message" => "message-id=<20130101142543.5828399CCAF@mailserver14.example.com>"}简介:插件支持下面的配置选项:需要的配置选项:grok { }细节:add_field1.值类型是hash2. 默认值是{}如果 filter 是成功的,增加任何属性字段到这个事件,Field名字可以动态的和包含event部分使用%{field}.filter { grok { add_field => { "foo_%{somefield}" => "Hello world, from %{host}" } patterns_dir => ["./patterns"] match => { "message" => "%{SYSLOGBASE} %{POSTFIX_QUEUEID:queue_id}: %{GREEDYDATA:syslog_message}" } }}输出;zjtest7-frontend:/usr/local/logstash-2.3.4/config# ../bin/logstash -f stdin.conf Settings: Default pipeline workers: 1Pipeline main startedJan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>{ "message" => "Jan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>", "@version" => "1", "@timestamp" => "2016-08-30T05:44:35.071Z", "host" => "0.0.0.0", "timestamp" => "Jan 1 06:25:43", "logsource" => "mailserver14", "program" => "postfix/cleanup", "pid" => "21403", "queue_id" => "BEF25A72965", "syslog_message" => "message-id=<20130101142543.5828399CCAF@mailserver14.example.com>", "foo_%{somefield}" => "Hello world, from 0.0.0.0"}##你可以一次增加多个字段:filter { grok { add_field => { "foo_%{somefield}" => "Hello world, from %{host}" "new_field" => "new_static_value" } patterns_dir => ["./patterns"] match => { "message" => "%{SYSLOGBASE} %{POSTFIX_QUEUEID:queue_id}: %{GREEDYDATA:syslog_message}" } }}输出;zjtest7-frontend:/usr/local/logstash-2.3.4/config# ../bin/logstash -f stdin.conf Settings: Default pipeline workers: 1Pipeline main startedJan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>{ "message" => "Jan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>", "@version" => "1", "@timestamp" => "2016-08-30T05:46:37.029Z", "host" => "0.0.0.0", "timestamp" => "Jan 1 06:25:43", "logsource" => "mailserver14", "program" => "postfix/cleanup", "pid" => "21403", "queue_id" => "BEF25A72965", "syslog_message" => "message-id=<20130101142543.5828399CCAF@mailserver14.example.com>", "foo_%{somefield}" => "Hello world, from 0.0.0.0", "new_field" => "new_static_value"add_tag1.值类型是array2.默认是[]如果filter 成功,增加任意的tags 到这个事件。Tags 可以动态的包含事件的部分使用%{field} syntax.filter { grok { add_tag => [ "foo_%{somefield}" ] }}# You can also add multiple tags at once:filter { grok { add_tag => [ "foo_%{somefield}", "taggedy_tag"] }}zjtest7-frontend:/usr/local/logstash-2.3.4/config# ../bin/logstash -f stdin.conf Settings: Default pipeline workers: 1Pipeline main startedJan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>{ "message" => "Jan 1 06:25:43 mailserver14 postfix/cleanup[21403]: BEF25A72965: message-id=<20130101142543.5828399CCAF@mailserver14.example.com>", "@version" => "1", "@timestamp" => "2016-08-30T05:50:18.451Z", "host" => "0.0.0.0", "timestamp" => "Jan 1 06:25:43", "logsource" => "mailserver14", "program" => "postfix/cleanup", "pid" => "21403", "queue_id" => "BEF25A72965", "syslog_message" => "message-id=<20130101142543.5828399CCAF@mailserver14.example.com>", "foo_%{somefield}" => "Hello world, from 0.0.0.0", "new_field" => "new_static_value", "tags" => [ [0] "foo_%{somefield}" ]}break_on_match1.值类型是波尔型2.默认值是trueBreak 在第一个匹配,第一次成功匹配通过grok 会导致filter 被完成。如果你需要grok 尝试所有的patterns(可能解析不同的东西),设置这个为falsematch:1.值类型是hash2.默认是{}filter { grok { match => { "message" => "Duration: %{NUMBER:duration}" } }}