热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

golangnetpoller

前言开始讲netpoller之前先讲一下socket网络编程和epoll,不管go也好,nginx也好,只要是开启网络服务就绕不开socket,它是网络服务的基础。下一章网络编程先






前言

开始讲netpoller之前先讲一下socket网络编程和epoll,不管go也好,nginx也好,只要是开启网络服务就绕不开socket,它是网络服务的基础。下一章网络编程先讲讲socket的基础函数。


网络编程

socket(购买电话机)

int socket(int domain, int type, int protocol);

socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:
domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INET(IPv4)、AF_INET6(IPv6)、AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
type:指定socket类型。常用的socket类型有,SOCK_STREAM(流式套接字)、SOCK_DGRAM(数据报式套接字)、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等 ,linux2.1.17版本后增加了SOCK_NONBLOCK,代表了非阻塞模式
示例:

int s = socket(AF_INET, SOCK_STREAM | SOCK_NONBLOCK, IPPROTO_TCP);

protocol:就是指定协议。常用的协议有,IPPROTO_TCP、PPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议。


bind(接电话线)

bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INET、AF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函数的三个参数分别为:
sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字

addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址,例如”127.0.0.1:80”

addrlen: 对应的是地址的长度。


listen(等电话中)

int listen(int sockfd, int backlog);

backlog: socket可以排队的最大连接个数
当有多个客户端一起请求的时候,服务端不可能来多少就处理多少,这样如果并发太多,就会因为性能的因素发生拥塞,然后造成雪崩。所有就搞了一个队列,先将请求放在队列里面,一个个来。socket_listen里面的第二个参数backlog就是设置这个队列的长度。如果将队列长度设置成10,那么如果有20个请求一起过来,服务端就会先放10个请求进入这个队列,因为长度只有10。然后其他的就直接拒绝。tcp协议这时候不会发送rst给客户端,这样的话客户端就会重新发送SYN,以便能进入这个队列。
如果三次握手完成了,就会将完成三次握手的请求取出来,放入另一个队列中,这样队列就空出一个位置,其他重发SYN的请求就可以进入队列中。


connect(打电话)

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

sockaddr:socket地址,”127.0.0.1:8080”
addrlen:地址长度


accept(接电话)

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

sockaddr:一个指针,接收客户端socket地址,”127.0.0.1:36820”
addrlen:客户端地址长度


read/write/recv/send (通话)

read函数是负责从fd中读取内容。
write函数将buf中的nbytes字节内容写入文件描述符fd。

golang netpoller


io多路复用

所谓 I/O 多路复用指的就是 select/poll/epoll 这一系列的多路选择器:支持单一线程同时监听多个文件描述符(I/O 事件),阻塞等待,并在其中某个文件描述符可读写时收到通知。 I/O 复用其实复用的不是 I/O 连接,而是复用线程,让一个 thread of control 能够处理多个连接(I/O 事件)。


select

#include <sys/select.h>
/* According to earlier standards */
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
// 和 select 紧密结合的四个宏:
void FD_CLR(int fd, fd_set *set);
int FD_ISSET(int fd, fd_set *set);
void FD_SET(int fd, fd_set *set);
void FD_ZERO(fd_set *set);

理解 select 的关键在于理解 fd_set,为说明方便,取 fd_set 长度为 1 字节,fd_set 中的每一 bit 可以对应一个文件描述符 fd,则 1 字节长的 fd_set 最大可以对应 8 个 fd。select 的调用过程如下:



  1. 执行 FD_ZERO(&set), 则 set 用位表示是 0000,0000
  2. 若 fd=5, 执行 FD_SET(fd, &set); 后 set 变为 0001,0000(第 5 位置为 1)
  3. 再加入 fd=2, fd=1,则 set 变为 0001,0011
  4. 执行 select(6, &set, 0, 0, 0) 阻塞等待
  5. 若 fd=1, fd=2 上都发生可读事件,则 select 返回,此时 set 变为 0000,0011 (注意:没有事件发生的 fd=5 被清空)

基于上面的调用过程,可以得出 select 的特点:



  • 可监控的文件描述符个数取决于 sizeof(fd_set) 的值。假设服务器上 sizeof(fd_set)=512,每 bit 表示一个文件描述符,则服务器上支持的最大文件描述符是 512*8=4096。
  • 将 fd 加入 select 监控集的同时,还要再使用一个数据结构 array 保存放到 select 监控集中的 fd,一是用于在 select 返回后,array 作为源数据和 fd_set 进行 FD_ISSET 判断。二是 select 返回后会把以前加入的但并无事件发生的 fd 清空,则每次开始 select 前都要重新从 array 取得 fd 逐一加入(FD_ZERO 最先),扫描 array 的同时取得 fd 最大值 maxfd,用于 select 的第一个参数
  • 可见 select 模型必须在 select 前循环 array(加 fd,取 maxfd),select 返回后循环 array(FD_ISSET 判断是否有事件发生)

所以,select 有如下的缺点:



  1. 最大并发数限制:使用 32 个整数的 32 位,即 32*32=1024 来标识 fd,虽然可修改,但是有以下第 2, 3 点的瓶颈
  2. 每次调用 select,都需要把 fd 集合从用户态拷贝到内核态,这个开销在 fd 很多时会很大
  3. 性能衰减严重:每次 kernel 都需要线性扫描整个 fd_set,所以随着监控的描述符 fd 数量增长,其 I/O 性能会线性下降

poll 的实现和 select 非常相似,只是描述 fd 集合的方式不同,poll 使用 pollfd 结构而不是 select 的 fd_set 结构,poll 解决了最大文件描述符数量限制的问题,但是同样需要从用户态拷贝所有的 fd 到内核态,也需要线性遍历所有的 fd 集合,所以它和 select 只是实现细节上的区分,并没有本质上的区别。


epoll

struct eventpoll{
....
/*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
struct rb_root rbr;
/*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
struct list_head rdlist;
....
};

#include <sys/epoll.h>
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

函数


epoll_create(int size);

创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。


epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事
events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里


epoll_wailt

等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。


优势

由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。

设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?

在select/poll时代,服务器进程每次都把这100万个连接告诉操作系统(从用户态复制句柄数据结构到内核态),让操作系统内核去查询这些套接字上是否有事件发生,轮询完后,再将句柄数据复制到用户态,让服务器应用程序轮询处理已发生的网络事件,这一过程资源消耗较大,因此,select/poll一般只能处理几千的并发连接。

epoll的设计和实现与select完全不同。把原先的select/poll调用分成了3个部分:

1)调用epoll_create()建立一个epoll对象

2)调用epoll_ctl向epoll对象中添加这100万个连接的套接字

3)调用epoll_wait收集发生的事件的连接

如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。

与 select&poll 相比,epoll 分清了高频调用和低频调用。例如,epoll_ctl 相对来说就是非频繁调用的,而 epoll_wait 则是会被高频调用的。所以 epoll 利用 epoll_ctl 来插入或者删除一个 fd,实现用户态到内核态的数据拷贝,这确保了每一个 fd 在其生命周期只需要被拷贝一次,而不是每次调用 epoll_wait 的时候都拷贝一次。 epoll_wait 则被设计成几乎没有入参的调用,相比 select&poll 需要把全部监听的 fd 集合从用户态拷贝至内核态的做法,epoll 的效率就高出了一大截。

在实现上 epoll 采用红黑树来存储所有监听的 fd,而红黑树本身插入和删除性能比较稳定,时间复杂度 O(logN)。通过 epoll_ctl 函数添加进来的 fd 都会被放在红黑树的某个节点内,所以,重复添加是没有用的。当把 fd 添加进来的时候时候会完成关键的一步:该 fd 会与相应的设备(网卡)驱动程序建立回调关系,也就是在内核中断处理程序为它注册一个回调函数,在 fd 相应的事件触发(中断)之后(设备就绪了),内核就会调用这个回调函数,该回调函数在内核中被称为: ep_poll_callback这个回调函数其实就是把这个 fd 添加到 rdllist 这个双向链表(就绪链表)中。epoll_wait 实际上就是去检查 rdllist 双向链表中是否有就绪的 fd,当 rdllist 为空(无就绪 fd)时挂起当前进程,直到 rdllist 非空时进程才被唤醒并返回。


边缘/水平触发模式

Level_triggered(水平触发):当被监控的文件描述符上有可读写事件发生时,epoll_wait()会通知处理程序去读写。如果这次没有把数据一次性全部读写完(如读写缓冲区太小),那么下次调用 epoll_wait()时,它还会通知你在上没读写完的文件描述符上继续读写,当然如果你一直不去读写,它会一直通知你!!!如果系统中有大量你不需要读写的就绪文件描述符,而它们每次都会返回,这样会大大降低处理程序检索自己关心的就绪文件描述符的效率

Edge_triggered(边缘触发):当被监控的文件描述符上有可读写事件发生时,epoll_wait()会通知处理程序去读写。如果这次没有把数据全部读写完(如读写缓冲区太小),那么下次调用epoll_wait()时,它不会通知你,也就是它只会通知你一次,直到该文件描述符上出现第二次可读写事件才会通知你!!!这种模式比水平触发效率高,系统不会充斥大量你不关心的就绪文件描述符


为什么ET模式要用非阻塞socket

假设buffer有1024字节,一次读取的数据很大,超过1024的大小:这种情况就需要读取多次,也就是要调用多次recv函数,通常我们会用while循环一直读取,无论ET还是LT,这样LT模式就显得很鸡肋,所以一般不用LT。在ET模式下,(1)、如果用阻塞IO+while循环,当最后一个数据读取完后,程序是无法立刻跳出while循环的,因为阻塞IO会在 while(true){ int len=recv(); }这里阻塞住,除非对方关闭连接或者recv出错,这样程序就无法继续往下执行,这一次的epoll_wait没有办法处理其它的连接,会造成延迟、并发度下降。(2)、如果是非阻塞IO+while循环当读取完数据后,recv会立即返回-1,并将errno设置为EAGAIN或EWOULDBLOCK,这就表示数据已经读取完成,已经没有数据了,可以退出循环了。这样就不会像阻塞IO一样卡在那里,这就减少了不必要的等待时间,性能自然更高。


网络编程+epoll代码示例

int main(){
struct epoll_event ev, events[MAX_EVENTS];
int addrlen, listenfd, conn_sock, nfds, epfd, fd, i, nread, n;
struct sockaddr_in local, remote;
char buf[BUFSIZ];
//创建listen socket
if( (listenfd = socket(AF_INET, SOCK_STREAM | SOCK_NONBLOCK , 0)) < 0) {
perror("sockfd\n");
exit(1);
}
bzero(&local, sizeof(local));
local.sin_family = AF_INET;
local.sin_addr.s_addr = htonl(INADDR_ANY);;
local.sin_port = htons(PORT);
if( bind(listenfd, (struct sockaddr *) &local, sizeof(local)) < 0) {
perror("bind\n");
exit(1);
}
listen(listenfd, 20);
epfd = epoll_create(MAX_EVENTS);
if (epfd == -1) {
perror("epoll_create");
exit(EXIT_FAILURE);
}
ev.events = EPOLLIN;
ev.data.fd = listenfd;
if (epoll_ctl(epfd, EPOLL_CTL_ADD, listenfd, &ev) == -1) {
perror("epoll_ctl: listen_sock");
exit(EXIT_FAILURE);
}
for (;;) {
nfds = epoll_wait(epfd, events, MAX_EVENTS, -1);
if (nfds == -1) {
perror("epoll_pwait");
exit(EXIT_FAILURE);
}
for (i = 0; i < nfds; ++i) {
fd = events[i].data.fd;
if (fd == listenfd) {
while ((conn_sock = accept(listenfd,(struct sockaddr *) &remote,
(size_t *)&addrlen)) > 0) {
ev.events = EPOLLIN | EPOLLET;
ev.data.fd = conn_sock;
if (epoll_ctl(epfd, EPOLL_CTL_ADD, conn_sock,
&ev) == -1) {
perror("epoll_ctl: add");
exit(EXIT_FAILURE);
}
}
if (conn_sock == -1) {
if (errno != EAGAIN && errno != ECONNABORTED
&& errno != EPROTO && errno != EINTR)
perror("accept");
}
continue;
}
if (events[i].events & EPOLLIN) {
n = 0;
while ((nread = read(fd, buf + n, BUFSIZ-1)) > 0) {
n += nread;
}
if (nread == -1 && errno != EAGAIN) {
perror("read error");
}
ev.data.fd = fd;
ev.events = events[i].events | EPOLLOUT;
if (epoll_ctl(epfd, EPOLL_CTL_MOD, fd, &ev) == -1) {
perror("epoll_ctl: mod");
}
}
if (events[i].events & EPOLLOUT) {
sprintf(buf, "HTTP/1.1 200 OK\r\nContent-Length: %d\r\n\r\nHello World", 11);
int nwrite, data_size = strlen(buf);
n = data_size;
while (n > 0) {
nwrite = write(fd, buf + data_size - n, n);
if (nwrite < n) {
if (nwrite == -1 && errno != EAGAIN) {
perror("write error");
}
break;
}
n -= nwrite;
}
close(fd);
}
}
}
return 0;
}

go netpoller

Go netpoller 基本原理


Go netpoller 通过在底层对 epoll/kqueue/iocp 的封装,从而实现了使用同步编程模式达到异步执行的效果。总结来说,所有的网络操作都以网络描述符 netFD 为中心实现。netFD 与底层 PollDesc 结构绑定,当在一个 netFD 上读写遇到 EAGAIN 错误时,就将当前 goroutine 存储到这个 netFD 对应的 PollDesc 中,同时调用 gopark 把当前 goroutine 给 park 住,直到这个 netFD 上再次发生读写事件,才将此 goroutine 给 ready 激活重新运行。显然,在底层通知 goroutine 再次发生读写等事件的方式就是 epoll/kqueue/iocp 等事件驱动机制。


Go 是一门跨平台的编程语言,而不同平台针对特定的功能有不用的实现,这当然也包括了 I/O 多路复用技术,比如 Linux 里的 I/O 多路复用有 selectpollepoll,而 freeBSD 或者 MacOS 里则是 kqueue,而 Windows 里则是基于异步 I/O 实现的 iocp,等等;因此,Go 为了实现底层 I/O 多路复用的跨平台,分别基于上述的这些不同平台的系统调用实现了多版本的 netpollers


数据结构

type netFD struct {
pfd poll.FD
// immutable until Close
family int
sotype int
isConnected bool // handshake completed or use of association with peer
net string
laddr Addr
raddr Addr
}
type FD struct {
// Lock sysfd and serialize access to Read and Write methods.
fdmu fdMutex
// System file descriptor. Immutable until Close.
Sysfd int
// I/O poller.
pd pollDesc
// Writev cache.
iovecs *[]syscall.Iovec
// Semaphore signaled when file is closed.
csema uint32
// Non-zero if this file has been set to blocking mode.
isBlocking uint32
// Whether this is a streaming descriptor, as opposed to a
// packet-based descriptor like a UDP socket. Immutable. IsStream bool
// Whether a zero byte read indicates EOF. This is false for a
// message based socket connection. ZeroReadIsEOF bool
// Whether this is a file rather than a network socket.
isFile bool
}

代码示例(服务端)

package main
import (
"fmt"
"log" "net")
func main() {
listen, err := net.Listen("tcp", ":8888")
if err != nil {
log.Println("listen error: ", err)
return
}
for {
conn, err := listen.Accept()
if err != nil {
log.Println("accept error: ", err)
break
}
// start a new goroutine to handle the new connection.
go HandleConn(conn)
}
}
func HandleConn(conn net.Conn) {
defer conn.Close()
packet := make([]byte, 1024)
for {
// block here if socket is not available for reading data.
n, err := conn.Read(packet)
if err != nil {
log.Println("read socket error: ", err)
return
}
fmt.Println(string(packet[:n]))
// same as above, block here if socket is not available for writing.
_, _ = conn.Write([]byte("hi"))
}
}

代码示例(客户端)

package main
import (
"fmt"
"net"
"testing"
)
func TestClient(t *testing.T) {
conn, err := net.Dial("tcp", "127.0.0.1:8888")
if err != nil {
panic(err)
}
defer conn.Close()
packet := make([]byte, 1024)
d := "hello"
_, err = conn.Write([]byte(d))
if err != nil {
panic(err)
}
n, err := conn.Read(packet)
if err != nil {
panic(err)
}
fmt.Println(string(packet[:n]))
}

epoll对应方法

#include <sys/epoll.h>
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
// Go 对上面三个调用的封装
func netpollinit()
func netpollopen(fd uintptr, pd *pollDesc) int32
func netpoll(block bool) gList

net.Listen

调用 net.Listen 之后,底层会通过 Linux 的系统调用 socket 方法创建一个 fd 分配给 listener,并用以来初始化 listener 的 netFD ,接着调用 netFD 的 listenStream 方法完成对 socket 的 bind&listen 操作以及对 netFD 的初始化



  1. 调用 epollcreate1 (netpollinit) 创建一个 epoll 实例 epfd,作为整个 runtime 的唯一 event-loop 使用;
  2. netpollBreakRd 通知信号量封装成 epollevent 事件结构体注册(netpollopen)进 epoll 实例。

Listener.Accept()

netpoll accept socket 的工作流程如下:



  1. 服务端的 netFD 在 listen 时会创建 epoll 的实例,并将 listenerFD 加入 epoll 的事件队列
  2. netFD 在 accept 时将返回的 connFD 也加入 epoll 的事件队列
  3. netFD 在读写时出现 syscall.EAGAIN 错误,通过 pollDesc 的 waitRead 方法将当前的 goroutine park 住,直到 ready,从 pollDesc 的 waitRead 中返回

Conn.Read/Conn.Write

read/write 的工作流程如下:



  1. accept 成功时会生成客户端connFD,并将fd 加入 epoll 的事件队列
  2. netFD 在read/write时出现 syscall.EAGAIN 错误,通过 pollDesc 的 waitRead 方法将当前的 goroutine park 住,直到 ready,从 pollDesc 的 waitRead 中返回
    核心是调用 syscall.Read/syscall.Write 系统调用

epoll_wait时机


首先,client 连接 server 的时候,listener 通过 accept 调用接收新 connection,每一个新 connection 都启动一个 goroutine 处理,accept 调用会把该 connection 的 fd 连带所在的 goroutine 上下文信息封装注册到 epoll 的监听列表里去,当 goroutine 调用 conn.Read 或者 conn.Write 等需要阻塞等待的函数时,会被 gopark 给封存起来并使之休眠,让 P 去执行本地调度队列里的下一个可执行的 goroutine,往后 Go scheduler 会在循环调度的 runtime.schedule() 函数以及 sysmon 监控线程中调用 runtime.netpoll 以获取可运行的 goroutine 列表并通过调用 injectglist 把剩下的 g 放入全局调度队列或者当前 P 本地调度队列去重新执行。

那么当 I/O 事件发生之后,netpoller 是通过什么方式唤醒那些在 I/O wait 的 goroutine 的?答案是通过 runtime.netpoll


runtime.netpoll 的核心逻辑是:



  1. 根据调用方的入参 delay,设置对应的调用 epollwait 的 timeout 值;
  2. 调用 epollwait 等待发生了可读/可写事件的 fd;
  3. 循环 epollwait 返回的事件列表,处理对应的事件类型, 组装可运行的 goroutine 链表并返回。

golang netpoller




推荐阅读
  • 本文介绍了Swing组件的用法,重点讲解了图标接口的定义和创建方法。图标接口用来将图标与各种组件相关联,可以是简单的绘画或使用磁盘上的GIF格式图像。文章详细介绍了图标接口的属性和绘制方法,并给出了一个菱形图标的实现示例。该示例可以配置图标的尺寸、颜色和填充状态。 ... [详细]
  • 本文介绍了数据库的存储结构及其重要性,强调了关系数据库范例中将逻辑存储与物理存储分开的必要性。通过逻辑结构和物理结构的分离,可以实现对物理存储的重新组织和数据库的迁移,而应用程序不会察觉到任何更改。文章还展示了Oracle数据库的逻辑结构和物理结构,并介绍了表空间的概念和作用。 ... [详细]
  • 怎么在PHP项目中实现一个HTTP断点续传功能发布时间:2021-01-1916:26:06来源:亿速云阅读:96作者:Le ... [详细]
  • 在Oracle11g以前版本中的的DataGuard物理备用数据库,可以以只读的方式打开数据库,但此时MediaRecovery利用日志进行数据同步的过 ... [详细]
  • 深入解析Linux下的I/O多路转接epoll技术
    本文深入解析了Linux下的I/O多路转接epoll技术,介绍了select和poll函数的问题,以及epoll函数的设计和优点。同时讲解了epoll函数的使用方法,包括epoll_create和epoll_ctl两个系统调用。 ... [详细]
  • 向QTextEdit拖放文件的方法及实现步骤
    本文介绍了在使用QTextEdit时如何实现拖放文件的功能,包括相关的方法和实现步骤。通过重写dragEnterEvent和dropEvent函数,并结合QMimeData和QUrl等类,可以轻松实现向QTextEdit拖放文件的功能。详细的代码实现和说明可以参考本文提供的示例代码。 ... [详细]
  • Java序列化对象传给PHP的方法及原理解析
    本文介绍了Java序列化对象传给PHP的方法及原理,包括Java对象传递的方式、序列化的方式、PHP中的序列化用法介绍、Java是否能反序列化PHP的数据、Java序列化的原理以及解决Java序列化中的问题。同时还解释了序列化的概念和作用,以及代码执行序列化所需要的权限。最后指出,序列化会将对象实例的所有字段都进行序列化,使得数据能够被表示为实例的序列化数据,但只有能够解释该格式的代码才能够确定数据的内容。 ... [详细]
  • 开发笔记:加密&json&StringIO模块&BytesIO模块
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了加密&json&StringIO模块&BytesIO模块相关的知识,希望对你有一定的参考价值。一、加密加密 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 纠正网上的错误:自定义一个类叫java.lang.System/String的方法
    本文纠正了网上关于自定义一个类叫java.lang.System/String的错误答案,并详细解释了为什么这种方法是错误的。作者指出,虽然双亲委托机制确实可以阻止自定义的System类被加载,但通过自定义一个特殊的类加载器,可以绕过双亲委托机制,达到自定义System类的目的。作者呼吁读者对网上的内容持怀疑态度,并带着问题来阅读文章。 ... [详细]
  • 合并列值-合并为一列问题需求:createtabletab(Aint,Bint,Cint)inserttabselect1,2,3unionallsel ... [详细]
  • 超级简单加解密工具的方案和功能
    本文介绍了一个超级简单的加解密工具的方案和功能。该工具可以读取文件头,并根据特定长度进行加密,加密后将加密部分写入源文件。同时,该工具也支持解密操作。加密和解密过程是可逆的。本文还提到了一些相关的功能和使用方法,并给出了Python代码示例。 ... [详细]
  • 本文分析了Wince程序内存和存储内存的分布及作用。Wince内存包括系统内存、对象存储和程序内存,其中系统内存占用了一部分SDRAM,而剩下的30M为程序内存和存储内存。对象存储是嵌入式wince操作系统中的一个新概念,常用于消费电子设备中。此外,文章还介绍了主电源和后备电池在操作系统中的作用。 ... [详细]
  • linux进阶50——无锁CAS
    1.概念比较并交换(compareandswap,CAS),是原⼦操作的⼀种,可⽤于在多线程编程中实现不被打断的数据交换操作࿰ ... [详细]
  • 使用freemaker生成Java代码的步骤及示例代码
    本文介绍了使用freemaker这个jar包生成Java代码的步骤,通过提前编辑好的模板,可以避免写重复代码。首先需要在springboot的pom.xml文件中加入freemaker的依赖包。然后编写模板,定义要生成的Java类的属性和方法。最后编写生成代码的类,通过加载模板文件和数据模型,生成Java代码文件。本文提供了示例代码,并展示了文件目录结构。 ... [详细]
author-avatar
最棒的aaaaaaaaa2_531
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有