内容介绍中文摘要:
相似度度量方法在许多领域(如模式识别与机器感知)扮演着重要角色,引起国内外学者重点关注。当前,为图像构建二维稳健的相似度度量方法仍是重要研究课题。本文针对稳健人脸识别问题,基于子空间性质,提出一种有效且稳健的二维图像相似度度量方法。该方法通过线性变换与奇异值分解,度量两幅对齐人脸图像的相似度,同时消弱人脸识别过程中的干扰。展示了该方法的数学特征及度量特性,进而揭示所提方法的可行性与稳健机制。结合最近邻分类器,评估了所提方法在不同挑战下的人脸识别性能。实验结果表明所提方法在准确性和稳健性方面具有一定优势。
关键词:
子空间分析;图像相似度度量;人脸识别;模式识别
作者:张键
1,张恒
2,薄丽玲
2,李宏然
1,徐帅
1,袁冬青
2单位: 1江苏海洋大学计算机工程学院,中国连云港市,222005 2江苏海洋大学数学系,中国连云港市,222005 本文引用格式: Jian ZHANG, Heng ZHANG, Li-ling BO, Hong-ran LI, Shuai XU, Dong-qing YUAN, 2020. Subspace transform induced robust similarity measure for facial images. Frontiers of Information Technology & Electronic Engineering, 21(9):1334-1345. https://doi.org/10.1631/FITEE.1900552 |
本文精要导读:
点击下方“阅读全文”,下载全文PDF
关于本刊
Frontiers of Information Technology & Electronic Engineering(简称FITEE,中文名《信息与电子工程前沿(英文)》,ISSN 2095-9184,CN 33-1389/TP)是信息电子类综合性英文学术月刊,SCI-E、EI收录,最新影响因子1.604,进入JCR Q2分区。前身为2010年创办的《浙江大学学报英文版C辑:计算机与电子》,2015年更为现名,现为中国工程院信息与电子工程学部唯一院刊。覆盖计算机、信息与通信、控制、电子、光学等领域。文章类型包括研究论文、综述、个人视点、评述等。现任主编为中国工程院院士潘云鹤、卢锡城。实行国际同行评审制,初次转达意见一般在2~3个月内。文章一经录用将快速在线。
2019年,荣获中国科协等七部委推出的中国科技期刊卓越行动计划项目资助(梯队期刊)。
官网:http://www.jzus.zju.edu.cn
期刊Springer主页:
http://www.springer.com/computer/journal/11714
在线投稿:
http://www.editorialmanager.com/zusc
更多信息,请见:FITEE影响因子提升55%,首次跨入Q2区
微信加群
为方便广大科研人员交流讨论,本平台建有以下学科微信群。有需要加群的用户,请加小编个人微信号fitee_xb,并留言想要加入的群,小编会拉您进群。营销广告人员请勿扰。
计算机科学与技术学术群 | 光学工程与技术学术群 |
控制科学与技术学术群 | 信息与通信学术群 |
电力电子学术群 | 人工智能学术 |
加关注 ID: fitee_cae本公众号为中国工程院院刊《信息与电子工程前沿(英文)》(SCI-E、EI检索期刊)官方微信,功能包括:传播期刊的学术文章;为刊物关联学人(读者、作者、评审人、编委,等)提供便捷服务;发布学术写作、评审、编辑、出版等相关资讯;介绍信息与电子工程领域学术人物、学术思想、学术成果,展示该领域科学研究前沿进展;为该领域海内外学者提供友好互动平台。