作者:LuoXR小堇_137 | 来源:互联网 | 2023-05-19 08:08
ElasticStack介绍1.1简介ELK是一个免费开源的日志分析架构技术栈总称,官网https:www.elastic.cocn。包含三大基础组件,分别是Elasticsear
Elastic Stack介绍
1.1 简介
ELK是一个免费开源的日志分析架构技术栈总称,官网https://www.elastic.co/cn。包含三大基础组件,分别是Elasticsearch、Logstash、Kibana。但实际上ELK不仅仅适用于日志分析,它还可以支持其它任何数据搜索、分析和收集的场景,日志分析和收集只是更具有代表性。并非唯一性。下面是ELK架构:
随着elk发展,又有新成员Beats、elastic cloud的加入,所以就形成了Elastic Stack。所以说,ELK是旧的称呼,Elastic Stack是新的名字
1.2 特点
- 处理方式灵活:elasticsearch是目前最流行的准实时全文检索引擎,具有高速检索大数据的能力。
- 配置简单:安装elk的每个组件,仅需配置每个组件的一个配置文件即可。修改处不多,因为大量参数已经默认配在系统中,修改想要修改的选项即可。
- 接口简单:采用json形式RESTFUL API接受数据并响应,无关语言。
- 性能高效:elasticsearch基于优秀的全文搜索技术Lucene,采用倒排索引,可以轻易地在百亿级别数据量下,搜索出想要的内容,并且是秒级响应。
- 灵活扩展:elasticsearch和logstash都可以根据集群规模线性拓展,elasticsearch内部自动实现集群协作。
- 数据展现华丽:kibana作为前端展现工具,图表华丽,配置简单。
1.3 组件介绍
Elasticsearch
Elasticsearch 是使用java开发,基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架。它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。
Logstash
Logstash 基于java开发,是一个数据抽取转化工具。一般工作方式为c/s架构,client端安装在需要收集信息的主机上,server端负责将收到的各节点日志进行过滤、修改等操作在一并发往elasticsearch或其他组件上去。
Kibana
Kibana 基于nodejs,也是一个开源和免费的可视化工具。Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以汇总、分析和搜索重要数据日志。
Beats
Beats 平台集合了多种单一用途数据采集器。它们从成百上千或成千上万台机器和系统向 Logstash 或 Elasticsearch 发送数据。
Beats由如下组成:
Packetbeat:轻量型网络数据采集器,用于深挖网线上传输的数据,了解应用程序动态。Packetbeat 是一款轻量型网络数据包分析器,能够将数据发送至 Logstash 或 Elasticsearch。其支 持ICMP (v4 and v6)、DNS、HTTP、Mysql、PostgreSQL、Redis、MongoDB、Memcache等协议。
Filebeat:轻量型日志采集器。当您要面对成百上千、甚至成千上万的服务器、虚拟机和容器生成的日志时,请告别 SSH 吧。Filebeat 将为您提供一种轻量型方法,用于转发和汇总日志与文件,让简单的事情不再繁杂。
Metricbeat :轻量型指标采集器。Metricbeat 能够以一种轻量型的方式,输送各种系统和服务统计数据,从 CPU 到内存,从 Redis 到 Nginx,不一而足。可定期获取外部系统的监控指标信息,其可以监控、收集 Apache http、HAProxy、MongoDB、MySQL、Nginx、PostgreSQL、Redis、System、Zookeeper等服务。
Winlogbeat:轻量型 Windows 事件日志采集器。用于密切监控基于 Windows 的基础设施上发生的事件。Winlogbeat 能够以一种轻量型的方式,将 Windows 事件日志实时地流式传输至 Elasticsearch 和 Logstash。
Auditbeat:轻量型审计日志采集器。收集您 Linux 审计框架的数据,监控文件完整性。Auditbeat 实时采集这些事件,然后发送到 Elastic Stack 其他部分做进一步分析。
Heartbeat:面向运行状态监测的轻量型采集器。通过主动探测来监测服务的可用性。通过给定 URL 列表,Heartbeat 仅仅询问:网站运行正常吗?Heartbeat 会将此信息和响应时间发送至 Elastic 的其他部分,以进行进一步分析。
Functionbeat:面向云端数据的无服务器采集器。在作为一项功能部署在云服务提供商的功能即服务 (FaaS) 平台上后,Functionbeat 即能收集、传送并监测来自您的云服务的相关数据。
Elastic cloud
基于 Elasticsearch 的软件即服务(SaaS)解决方案。通过 Elastic 的官方合作伙伴使用托管的 Elasticsearch 服务。
1.4 Elasticsearch核心概念
1)lucene和elasticsearch的关系
Lucene:最先进、功能最强大的搜索库,直接基于lucene开发,非常复杂,api复杂
Elasticsearch:基于lucene,封装了许多lucene底层功能,提供简单易用的restful api接口和许多语言的客户端,如java的高级客户端(Java High Level REST Client)和底层客户端(Java Low Level REST Client)
起源:Shay Banon。2004年失业,陪老婆去伦敦学习厨师。失业在家帮老婆写一个菜谱搜索引擎。封装了lucene的开源项目,compass。找到工作后,做分布式高性能项目,再封装compass,写出了elasticsearch,使得lucene支持分布式。现在是Elasticsearch创始人兼Elastic首席执行官。
2)elasticsearch的核心概念
NRT(Near Realtime):近实时
两方面:
- 写入数据时,过1秒才会被搜索到,因为内部在分词、录入索引。
- es搜索时:搜索和分析数据需要秒级出结果。
Cluster:集群
包含一个或多个启动着es实例的机器群。通常一台机器起一个es实例。同一网络下,集名一样的多个es实例自动组成集群,自动均衡分片等行为。默认集群名为“elasticsearch”。
Node:节点
每个es实例称为一个节点。节点名自动分配,也可以手动配置。
Index:索引
包含一堆有相似结构的文档数据。
索引创建规则:
- 仅限小写字母
- 不能包含\、/、 *、?、"、<、>、|、#以及空格符等特殊符号
- 从7.0版本开始不再包含冒号
- 不能以-、_或+开头
- 不能超过255个字节(注意它是字节,因此多字节字符将计入255个限制)
Document:文档
es中的最小数据单元。一个document就像数据库中的一条记录。通常以json格式显示。多个document存储于一个索引(Index)中。
book document
{
"book_id": "1",
"book_name": "java编程思想",
"book_desc": "从Java的基础语法到最高级特性(深入的[面向对象](https://baike.baidu.com/item/面向对象)概念、多线程、自动项目构建、单元测试和调试等),本书都能逐步指导你轻松掌握。",
"category_id": "2",
"category_name": "java"
}
Field:字段
就像数据库中的列(Columns),定义每个document应该有的字段。
Type:类型
每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field。
注意:6.0之前的版本有type(类型)概念,type相当于关系数据库的表,ES官方将在ES9.0版本中彻底删除type。本教程typy都为_doc。
shard:分片
index数据过大时,将index里面的数据,分为多个shard,分布式的存储在各个服务器上面。可以支持海量数据和高并发,提升性能和吞吐量,充分利用多台机器的cpu。
replica:副本
在分布式环境下,任何一台机器都会随时宕机,如果宕机,index的一个分片没有,导致此index不能搜索。所以,为了保证数据的安全,我们会将每个index的分片经行备份,存储在另外的机器上。保证少数机器宕机es集群仍可以搜索。
能正常提供查询和插入的分片我们叫做主分片(primary shard),其余的我们就管他们叫做备份的分片(replica shard)。
es6默认新建索引时,5分片,2副本,也就是一主一备,共10个分片。所以,es集群最小规模为两台。
3)elasticsearch核心概念 vs. 数据库核心概念
数据库Database |
索引Index |
---|
关系型数据库(比如Mysql) |
非关系型数据库(Elasticsearch) |
表Table |
索引Index(原为Type) |
数据行Row |
文档Document |
数据列Column |
字段Field |
约束 Schema |
映射Mapping |