热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

c_cppA*アルゴリズム

篇首语:本文由编程笔记#小编为大家整理,主要介绍了c_cppA*アルゴリズム相关的知识,希望对你有一定的参考价值。

篇首语:本文由编程笔记#小编为大家整理,主要介绍了c_cpp A *アルゴリズム相关的知识,希望对你有一定的参考价值。




// Astar.cpp
// http://en.wikipedia.org/wiki/A*
// Compiler: Dev-C++ 4.9.9.2
// FB - 201012256
#include
#include
#include
#include
#include
#include
using namespace std;
const int n=60; // horizontal size of the map
const int m=60; // vertical size size of the map
static int map[n][m];
static int closed_nodes_map[n][m]; // map of closed (tried-out) nodes
static int open_nodes_map[n][m]; // map of open (not-yet-tried) nodes
static int dir_map[n][m]; // map of directions
const int dir=8; // number of possible directions to go at any position
// if dir==4
//static int dx[dir]={1, 0, -1, 0};
//static int dy[dir]={0, 1, 0, -1};
// if dir==8
static int dx[dir]={1, 1, 0, -1, -1, -1, 0, 1};
static int dy[dir]={0, 1, 1, 1, 0, -1, -1, -1};
class node
{
// current position
int xPos;
int yPos;
// total distance already travelled to reach the node
int level;
// priority=level+remaining distance estimate
int priority; // smaller: higher priority
public:
node(int xp, int yp, int d, int p)
{xPos=xp; yPos=yp; level=d; priority=p;}

int getxPos() const {return xPos;}
int getyPos() const {return yPos;}
int getLevel() const {return level;}
int getPriority() const {return priority;}
void updatePriority(const int & xDest, const int & yDest)
{
priority=level+estimate(xDest, yDest)*10; //A*
}
// give better priority to going strait instead of diagonally
void nextLevel(const int & i) // i: direction
{
level+=(dir==8?(i%2==0?10:14):10);
}

// Estimation function for the remaining distance to the goal.
const int & estimate(const int & xDest, const int & yDest) const
{
static int xd, yd, d;
xd=xDest-xPos;
yd=yDest-yPos;
// Euclidian Distance
d=static_cast(sqrt(xd*xd+yd*yd));
// Manhattan distance
//d=abs(xd)+abs(yd);

// Chebyshev distance
//d=max(abs(xd), abs(yd));
return(d);
}
};
// Determine priority (in the priority queue)
bool operator<(const node & a, const node & b)
{
return a.getPriority() > b.getPriority();
}
// A-star algorithm.
// The route returned is a string of direction digits.
string pathFind( const int & xStart, const int & yStart,
const int & xFinish, const int & yFinish )
{
static priority_queue pq[2]; // list of open (not-yet-tried) nodes
static int pqi; // pq index
static node* n0;
static node* m0;
static int i, j, x, y, xdx, ydy;
static char c;
pqi=0;
// reset the node maps
for(y=0;y {
for(x=0;x {
closed_nodes_map[x][y]=0;
open_nodes_map[x][y]=0;
}
}
// create the start node and push into list of open nodes
n0=new node(xStart, yStart, 0, 0);
n0->updatePriority(xFinish, yFinish);
pq[pqi].push(*n0);
open_nodes_map[x][y]=n0->getPriority(); // mark it on the open nodes map
// A* search
while(!pq[pqi].empty())
{
// get the current node w/ the highest priority
// from the list of open nodes
n0=new node( pq[pqi].top().getxPos(), pq[pqi].top().getyPos(),
pq[pqi].top().getLevel(), pq[pqi].top().getPriority());
x=n0->getxPos(); y=n0->getyPos();
pq[pqi].pop(); // remove the node from the open list
open_nodes_map[x][y]=0;
// mark it on the closed nodes map
closed_nodes_map[x][y]=1;
// quit searching when the goal state is reached
//if((*n0).estimate(xFinish, yFinish) == 0)
if(x==xFinish && y==yFinish)
{
// generate the path from finish to start
// by following the directions
string path="";
while(!(x==xStart && y==yStart))
{
j=dir_map[x][y];
c=&#39;0&#39;+(j+dir/2)%dir;
path=c+path;
x+=dx[j];
y+=dy[j];
}
// garbage collection
delete n0;
// empty the leftover nodes
while(!pq[pqi].empty()) pq[pqi].pop();
return path;
}
// generate moves (child nodes) in all possible directions
for(i=0;i {
xdx=x+dx[i]; ydy=y+dy[i];
if(!(xdx<0 || xdx>n-1 || ydy<0 || ydy>m-1 || map[xdx][ydy]==1
|| closed_nodes_map[xdx][ydy]==1))
{
// generate a child node
m0=new node( xdx, ydy, n0->getLevel(),
n0->getPriority());
m0->nextLevel(i);
m0->updatePriority(xFinish, yFinish);
// if it is not in the open list then add into that
if(open_nodes_map[xdx][ydy]==0)
{
open_nodes_map[xdx][ydy]=m0->getPriority();
pq[pqi].push(*m0);
// mark its parent node direction
dir_map[xdx][ydy]=(i+dir/2)%dir;
}
else if(open_nodes_map[xdx][ydy]>m0->getPriority())
{
// update the priority info
open_nodes_map[xdx][ydy]=m0->getPriority();
// update the parent direction info
dir_map[xdx][ydy]=(i+dir/2)%dir;
// replace the node
// by emptying one pq to the other one
// except the node to be replaced will be ignored
// and the new node will be pushed in instead
while(!(pq[pqi].top().getxPos()==xdx &&
pq[pqi].top().getyPos()==ydy))
{
pq[1-pqi].push(pq[pqi].top());
pq[pqi].pop();
}
pq[pqi].pop(); // remove the wanted node
// empty the larger size pq to the smaller one
if(pq[pqi].size()>pq[1-pqi].size()) pqi=1-pqi;
while(!pq[pqi].empty())
{
pq[1-pqi].push(pq[pqi].top());
pq[pqi].pop();
}
pqi=1-pqi;
pq[pqi].push(*m0); // add the better node instead
}
else delete m0; // garbage collection
}
}
delete n0; // garbage collection
}
return ""; // no route found
}
int main()
{
srand(time(NULL));
// create empty map
for(int y=0;y {
for(int x=0;x }
// fillout the map matrix with a &#39;+&#39; pattern
for(int x=n/8;x {
map[x][m/2]=1;
}
for(int y=m/8;y {
map[n/2][y]=1;
}

// randomly select start and finish locations
int xA, yA, xB, yB;
switch(rand()%8)
{
case 0: xA=0;yA=0;xB=n-1;yB=m-1; break;
case 1: xA=0;yA=m-1;xB=n-1;yB=0; break;
case 2: xA=n/2-1;yA=m/2-1;xB=n/2+1;yB=m/2+1; break;
case 3: xA=n/2-1;yA=m/2+1;xB=n/2+1;yB=m/2-1; break;
case 4: xA=n/2-1;yA=0;xB=n/2+1;yB=m-1; break;
case 5: xA=n/2+1;yA=m-1;xB=n/2-1;yB=0; break;
case 6: xA=0;yA=m/2-1;xB=n-1;yB=m/2+1; break;
case 7: xA=n-1;yA=m/2+1;xB=0;yB=m/2-1; break;
}
cout<<"Map Size (X,Y): "< cout<<"Start: "< cout<<"Finish: "< // get the route
clock_t start = clock();
string route=pathFind(xA, yA, xB, yB);
if(route=="") cout<<"An empty route generated!"< clock_t end = clock();
double time_elapsed = double(end - start);
cout<<"Time to calculate the route (ms): "< cout<<"Route:"< cout< // follow the route on the map and display it
if(route.length()>0)
{
int j; char c;
int x=xA;
int y=yA;
map[x][y]=2;
for(int i=0;i {
c =route.at(i);
j=atoi(&c);
x=x+dx[j];
y=y+dy[j];
map[x][y]=3;
}
map[x][y]=4;

// display the map with the route
for(int y=0;y {
for(int x=0;x if(map[x][y]==0)
cout<<".";
else if(map[x][y]==1)
cout<<"O"; //obstacle
else if(map[x][y]==2)
cout<<"S"; //start
else if(map[x][y]==3)
cout<<"R"; //route
else if(map[x][y]==4)
cout<<"F"; //finish
cout< }
}
getchar(); // wait for a (Enter) keypress
return(0);
}


推荐阅读
  • C++ 开发实战:实用技巧与经验分享
    C++ 开发实战:实用技巧与经验分享 ... [详细]
  • 单链表的高效遍历及性能优化策略
    本文探讨了单链表的高效遍历方法及其性能优化策略。在单链表的数据结构中,插入操作的时间复杂度为O(n),而遍历操作的时间复杂度为O(n^2)。通过在 `LinkList.h` 和 `main.cpp` 文件中对单链表进行封装,我们实现了创建和销毁功能的优化,提高了单链表的使用效率。此外,文章还介绍了几种常见的优化技术,如缓存节点指针和批量处理,以进一步提升遍历性能。 ... [详细]
  • 在洛谷 P1344 的坏牛奶追踪问题中,第一问要求计算最小割,而第二问则需要找到割边数量最少的最小割。通过为每条边附加一个单位权值,可以在求解最小割时优先选择边数较少的方案,从而同时解决两个问题。这种策略不仅简化了问题的求解过程,还确保了结果的最优性。 ... [详细]
  • ButterKnife 是一款用于 Android 开发的注解库,主要用于简化视图和事件绑定。本文详细介绍了 ButterKnife 的基础用法,包括如何通过注解实现字段和方法的绑定,以及在实际项目中的应用示例。此外,文章还提到了截至 2016 年 4 月 29 日,ButterKnife 的最新版本为 8.0.1,为开发者提供了最新的功能和性能优化。 ... [详细]
  • 本文探讨了如何利用 jQuery 的 JSONP 技术实现跨域调用外部 Web 服务。通过详细解析 JSONP 的工作原理及其在 jQuery 中的应用,本文提供了实用的代码示例和最佳实践,帮助开发者解决跨域请求中的常见问题。 ... [详细]
  • 在Kohana 3框架中,实现最优的即时消息显示方法是许多开发者关注的问题。本文将探讨如何高效、优雅地展示flash消息,包括最佳实践和技术细节,以提升用户体验和代码可维护性。 ... [详细]
  • 寒假作业解析:第三周 2月12日 第7题
    尽快完成之前的练习任务!每日一练2.1 Problem A Laurenty and Shop 的题目要求是选择两条不同的路线以最小化总的等待时间。简要分析:通过对比不同路线的等待时间,可以找到最优解。此问题可以通过动态规划或贪心算法来解决,具体取决于路线的复杂性和约束条件。 ... [详细]
  • 深入解析 Android 中 EditText 的 getLayoutParams 方法及其代码应用实例 ... [详细]
  • 具备括号和分数功能的高级四则运算计算器
    本研究基于C语言开发了一款支持括号和分数运算的高级四则运算计算器。该计算器通过模拟手算过程,对每个运算符进行优先级标记,并按优先级从高到低依次执行计算。其中,加减运算的优先级最低,为0。此外,该计算器还支持复杂的分数运算,能够处理包含括号的表达式,提高了计算的准确性和灵活性。 ... [详细]
  • 本文介绍了如何在 Windows 系统上利用 Docker 构建一个包含 NGINX、PHP、MySQL、Redis 和 Elasticsearch 的集成开发环境。通过详细的步骤说明,帮助开发者快速搭建和配置这一复杂的技术栈,提升开发效率和环境一致性。 ... [详细]
  • 本文介绍了如何在iOS平台上使用GLSL着色器将YV12格式的视频帧数据转换为RGB格式,并展示了转换后的图像效果。通过详细的技术实现步骤和代码示例,读者可以轻松掌握这一过程,适用于需要进行视频处理的应用开发。 ... [详细]
  • DRF框架中Serializer反序列化验证机制详解:深入探讨Validators的应用与优化
    在DRF框架的反序列化验证机制中,除了基本的字段类型和长度校验外,还常常需要进行更为复杂的条件限制校验。通过引入`validators`模块,可以实现自定义校验逻辑,如唯一字段校验等。本文将详细探讨`validators`的使用方法及其优化策略,帮助开发者更好地理解和应用这一重要功能。 ... [详细]
  • 深入理解 Java 控制结构的全面指南 ... [详细]
  • 深入解析HTTP网络请求API:从基础到进阶的全面指南
    本文全面解析了HTTP网络请求API,从基础到进阶,详细介绍了Android平台上的两种原生API——HttpUrlConnection和HttpClient。这两种API通过对底层Socket的封装,提供了高效、灵活的网络通信功能。文章不仅涵盖了基本的使用方法,还深入探讨了性能优化、错误处理和安全性等方面的高级主题,帮助开发者更好地理解和应用这些工具。 ... [详细]
  • 在Android 4.4系统中,通过使用 `Intent` 对象并设置动作 `ACTION_GET_CONTENT` 或 `ACTION_OPEN_DOCUMENT`,可以从相册中选择图片并获取其路径。具体实现时,需要为 `Intent` 添加相应的类别,并处理返回的 Uri 以提取图片的文件路径。此方法适用于需要从用户相册中选择图片的应用场景,能够确保兼容性和用户体验。 ... [详细]
author-avatar
闌珊脃_
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有