热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

arm中SP,LR,PC寄存器以及其它所有寄存器以及处理器运行模式介绍

ARM中所有寄存器都是32位的。这里以cortex-a7内核的MX6ULL处理器为例,按照功能可以分为两类:运行需要寄存器(程序正常运行所需要的,比如变量暂存,pc制作等,总共43

ARM中所有寄存器都是32位的。这里以cortex-a7内核的MX6ULL处理器为例,按照功能可以分为两类:运行需要寄存器(程序正常运行所需要的,比如变量暂存,pc制作等,总共43个),系统管理控制寄存器(存在于协处理器cp15的16个寄存器,用于mmu存储管理控制,cache控制,中断控制,浮点运算单元FPU等功能)。因此cortex-a7内核总的有59个寄存器

1. 运行需要寄存器

ARM 处理器共有 9不同的处理器运行模式:
用户模式(User),快速中断模式(FIQ),普通外部中断模式(IRQ),超级管理模式(Svc,裸机就是跑的这个模式,cpu复位也是这个模式),数据访问中止模式(Abort),未定义指令中止模式(Und),系统模式(Sys),监视模式(Mon),超级监视模式(Hyp)

当某个触发满足了,arm自动进入那个模式,比如外部中断来了,arm自动跳转进入IRQ_Handler向量地址,这时候就是自动进入了IRQ模式(在下面介绍的CPSR状态寄存器对应的位可以查询知道当前所处模式,确实改变了)。

除了用户模式,其它所有模式都是特权模式,如果跑了OS,大多数的程序都运行在用户模式,用户模式下是不能访问系统所有资源的,而且不能修改某些资源(比如程序状态寄存器CPSR只能被访问,不能被修改,而该寄存器低5位表示CPU运行模式状态,因此用户模式没法直接发生运行模式切换,保障了系统安全,比如用户模式不能直接开关某某中断),有些资源是受限的,要想访问这些资源,就必须发生模式切换,只能是通过借助异常(比如SWI软中断,将进入SVC模式)来完成模式切换,当要切换模式的时候,应用程序可以产生异常,在异常的处理过程中完成处理器模式切换。
 

任意一种模式都可以运行程序,因此每种模式,按原则来说会有自己的一组寄存器来实现代码运行,但是有些寄存器是共用的,有些是仅自己用的(从物理上的寄存器不同)。如下图所示(只画出了7种运行模式):

《arm中SP,LR,PC寄存器以及其它所有寄存器以及处理器运行模式介绍》

《arm中SP,LR,PC寄存器以及其它所有寄存器以及处理器运行模式介绍》

上面可以看出系统模式用户模式,都是正常模式,完全共用寄存器组,而其它模式都属于异常模式。

总结一下,CortexA 内核运行所需寄存器组成如下:
①、34 个通用寄存器,包括 R15 程序计数器(PC),这些寄存器都是 32 位的。
②、8 个状态寄存器,包括 CPSR 和 SPSR。
③、Hyp 模式下独有一个 ELR_Hyp 寄存器。

注:Thumb 程序中(arm指令集的一个子集,大大的节省了系统的存储空间,不是一个完整的体系结构,不能指望处理器只执行thumb指令集而不支持arm指令集),通常只能使用 r4~r7 来保存局部变量。

r12:内部程序调用暂存寄存器,也成为ip寄存器,我不知道是干嘛的,网上解释也模棱两可。

r13:栈指针,也称为sp寄存器

r14:连接寄存器,也称为lr寄存器,程序跳转(子程序调用,中断跳转)后,arm自动在该寄存器中存入原程序(未跳转)的下一条指令的地址

r15:程序计数器,也称为pc寄存器,保存的是当前正在取指的指令的地址(arm采用2级流水线,因此是当前正在执行指令的地址+8)。

除了上述每种模式所需寄存器外,还有6状态寄存器,最主要的就是两个CPSR和SPSR,arm进入异常模式后,SPSR自动保存进入异常前的CPSR的值,以便异常返回后恢复异常发生时的工作状态。因此主要看CPSR中的位都是什么作用:

《arm中SP,LR,PC寄存器以及其它所有寄存器以及处理器运行模式介绍》

常用于MRSMSR指令,用于spsr中的值转移到寄存器或把寄存器的内容加载到spsr中,如:

mrs r0, spsr                /* 读取spsr寄存器 */

msr spsr_cxsf, r0            /* 恢复spsr */

2. 系统管理控制寄存器

关 于 CP15 协处理 器和其 相关寄存 器的详细 内容 请参考下 面两份文 档:《ARM 
ArchitectureReference Manual ARMv7-A and ARMv7-R edition.pdf》第 1469 页“B3.17 Oranization of the CP15 registers in a VMSA implementation”。《Cortex-A7 Technical ReferenceManua.pdf》第55 页“Capter 4 System Control”。
CP15 协处理器一般用于存储系统管理,但是在中断中也会使用到,CP15 协处理器一共有
16 个 32 位寄存器。CP15 协处理器的访问通过如下另个指令完成:
MRC: 将 CP15 协处理器中的寄存器数据读到 ARM 寄存器中。
MCR: 将 ARM 寄存器的数据写入到 CP15 协处理器寄存器中。

MCR{cond} p15, , , , ,

这个指令很难理解,还好的是所有控制寄存器,官方文档给出了库函数(通过c语言中嵌入汇编实现的),例如:

/* C语言实现MCR指令 */
#define __MCR(coproc, opcode_1, src, CRn, CRm, opcode_2)                          \
    __ASM volatile (“MCR ” __STRINGIFY(p##coproc) “, ” __STRINGIFY(opcode_1) “, ” \
                    “%0, ” __STRINGIFY(c##CRn) “, ” __STRINGIFY(c##CRm) “, ”      \
                    __STRINGIFY(opcode_2)                                         \
                    : : “r” (src) )

/*******************************************************************************
 *                   CP15 访问函数
 ******************************************************************************/

FORCEDINLINE __STATIC_INLINE uint32_t __get_SCTLR(void)
{
  return __MRC(15, 0, 1, 0, 0);
}

FORCEDINLINE __STATIC_INLINE void __set_SCTLR(uint32_t sctlr)
{
  __MCR(15, 0, sctlr, 1, 0, 0);
}

我学的是正点原子的MX6ULL教程,上述不知道是原子自己写的还是官方SDK里面都有的,在正点原子工程的imx6ul/core_ca7.h文件里,此外里面还有读取cpsr等寄存器的函数,非常方便。

其中比较重要的是,cp15的SCTLR寄存器

/* CP15的SCTLR寄存器
* 参考资料:Cortex-A7 Technical ReferenceManua.pdf P105
*/
typedef union
{
struct
{
uint32_t M:1; /*! uint32_t A:1; /*! uint32_t C:1; /*! uint32_t _reserved0:2; /*! uint32_t CP15BEN:1; /*! uint32_t _reserved1:1; /*! uint32_t B:1; /*! uint32_t _reserved2:2; /*! uint32_t SW:1; /*! uint32_t Z:1; /*! uint32_t I:1; /*! uint32_t V:1; /*! uint32_t RR:1; /*! uint32_t _reserved3:2; /*! uint32_t HA:1; /*! uint32_t _reserved4:1; /*! uint32_t WXN:1; /*! uint32_t UWXN:1; /*! uint32_t FI:1; /*! uint32_t U:1; /*! uint32_t _reserved5:1; /*! uint32_t VE:1; /*! uint32_t EE:1; /*! uint32_t _reserved6:1; /*! uint32_t NMFI:1; /*! uint32_t TRE:1; /*! uint32_t AFE:1; /*! uint32_t TE:1; /*! uint32_t _reserved7:1; /*! } b; /*! uint32_t w; /*!} SCTLR_Type;

还有FPU的3个相关寄存器:NSACR、CPACR、FPEXC寄存器


推荐阅读
  • 初探性能优化:入门指南与实践技巧
    在编程领域,常有“尚未精通编码便急于优化”的声音。为了从性能优化的角度提升代码质量,本文将带领读者初步探索性能优化的基本概念与实践技巧。即使程序看似运行良好,数据处理效率仍有待提高,通过系统学习性能优化,能够帮助开发者编写更加高效、稳定的代码。文章不仅介绍了性能优化的基础知识,还提供了实用的调优方法和工具,帮助读者在实际项目中应用这些技术。 ... [详细]
  • 【系统架构师精讲】(16):操作系统核心概念——寄存器、内存与缓存机制详解
    在计算机系统架构中,中央处理器(CPU)内部集成了多种高速存储组件,用于临时存储指令、数据和地址。这些组件包括指令寄存器(IR)、程序计数器(PC)和累加器(ACC)。寄存器作为集成电路中的关键存储单元,由触发器构成,具备极高的读写速度,使得数据传输非常迅速。根据功能不同,寄存器可分为基本寄存器和移位寄存器,各自在数据处理中发挥重要作用。此外,寄存器与内存和缓存机制的协同工作,确保了系统的高效运行。 ... [详细]
  • 在嵌入式Linux系统中,性能低下通常由CPU、内存和I/O三个关键因素引起。为了有效提升系统性能,首先需要识别并定位性能瓶颈。通过综合分析这些瓶颈,可以采取针对性的优化措施,如调整内核参数、优化算法和改进数据结构等,从而显著提高系统的整体性能。 ... [详细]
  • 性能测试中的关键监控指标与深入分析
    在软件性能测试中,关键监控指标的选取至关重要。主要目的包括:1. 评估系统的当前性能,确保其符合预期的性能标准;2. 发现软件性能瓶颈,定位潜在问题;3. 优化系统性能,提高用户体验。通过综合分析这些指标,可以全面了解系统的运行状态,为后续的性能改进提供科学依据。 ... [详细]
  • 在《Linux高性能服务器编程》一书中,第3.2节深入探讨了TCP报头的结构与功能。TCP报头是每个TCP数据段中不可或缺的部分,它不仅包含了源端口和目的端口的信息,还负责管理TCP连接的状态和控制。本节内容详尽地解析了TCP报头的各项字段及其作用,为读者提供了深入理解TCP协议的基础。 ... [详细]
  • 该大学网站采用PHP和MySQL技术,在校内可免费访问某些外部收费资料数据库。为了方便学生校外访问,建议通过学校账号登录实现免费访问。具体方案可包括利用学校服务器作为代理,结合身份验证机制,确保合法用户在校外也能享受免费资源。 ... [详细]
  • 在优化Nginx与PHP的高效配置过程中,许多教程提供的配置方法存在诸多问题或不良实践。本文将深入探讨这些常见错误,并详细介绍如何正确配置Nginx和PHP,以实现更高的性能和稳定性。我们将从Nginx配置文件的基本指令入手,逐步解析每个关键参数的最优设置,帮助读者理解其背后的原理和实际应用效果。 ... [详细]
  • 在最近的WWDC17大会上,苹果公司宣布了多项重要更新,其中一项是macOS High Sierra 10.13 Final的正式发布。这一版本经过优化,显著提升了系统的稳定性和响应速度,为用户在任何Mac设备上提供了更加流畅的使用体验。本文将详细介绍如何在Windows系统中利用VMware虚拟机软件安装并运行macOS High Sierra 10.13 Final,帮助用户在非苹果硬件上体验这一先进操作系统。 ... [详细]
  • 在Linux系统中,网络配置是至关重要的任务之一。本文详细解析了Firewalld和Netfilter机制,并探讨了iptables的应用。通过使用`ip addr show`命令来查看网卡IP地址(需要安装`iproute`包),当网卡未分配IP地址或处于关闭状态时,可以通过`ip link set`命令进行配置和激活。此外,文章还介绍了如何利用Firewalld和iptables实现网络流量控制和安全策略管理,为系统管理员提供了实用的操作指南。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 深入探索HTTP协议的学习与实践
    在初次访问某个网站时,由于本地没有缓存,服务器会返回一个200状态码的响应,并在响应头中设置Etag和Last-Modified等缓存控制字段。这些字段用于后续请求时验证资源是否已更新,从而提高页面加载速度和减少带宽消耗。本文将深入探讨HTTP缓存机制及其在实际应用中的优化策略,帮助读者更好地理解和运用HTTP协议。 ... [详细]
  • 在当前的软件开发领域,Lua 作为一种轻量级脚本语言,在 .NET 生态系统中的应用逐渐受到关注。本文探讨了 Lua 在 .NET 环境下的集成方法及其面临的挑战,包括性能优化、互操作性和生态支持等方面。尽管存在一定的技术障碍,但通过不断的学习和实践,开发者能够克服这些困难,拓展 Lua 在 .NET 中的应用场景。 ... [详细]
  • 开发日志:201521044091 《Java编程基础》第11周学习心得与总结
    开发日志:201521044091 《Java编程基础》第11周学习心得与总结 ... [详细]
  • 在探讨Hibernate框架的高级特性时,缓存机制和懒加载策略是提升数据操作效率的关键要素。缓存策略能够显著减少数据库访问次数,从而提高应用性能,特别是在处理频繁访问的数据时。Hibernate提供了多层次的缓存支持,包括一级缓存和二级缓存,以满足不同场景下的需求。懒加载策略则通过按需加载关联对象,进一步优化了资源利用和响应时间。本文将深入分析这些机制的实现原理及其最佳实践。 ... [详细]
  • 本文深入探讨了 Git 与 SVN 的高效使用技巧,旨在帮助开发者轻松应对版本控制中的各种挑战。通过详细解析两种工具的核心功能与最佳实践,读者将能够更好地掌握版本管理的精髓,提高开发效率。 ... [详细]
author-avatar
877762833_166d01
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有