热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

android官方文档中文版_数据科学|最全实至名归,NumPy官方早有中文教程,结合深度学习,还有防脱发指南...

↑↑↑↑↑点击上方蓝色字关注我们!『运筹OR帷幄』转载作者:机器之心编者按如果说Pandas是传统机器学习的必备模块,那么Numpy就是深
↑↑↑↑↑点击上方蓝色字关注我们!

211d4909fe58be9e4fc393dd9b3328eb.png


『运筹OR帷幄』转载

作者:机器之心

编者按

如果说Pandas是传统机器学习的必备模块,那么Numpy就是深度学习的基本功。目前市面上有太多基于Pandas的教程,但是关于Numpy的教程,在寻找资料的过程中笔者发现NumPy 官方早在去年就已出了一个中文版网站,涵盖 NumPy 的一切。

在 Github 上一度蝉联最流行的机器学习和数据科学包 NumPy,已经有了非常之系统的中文文档,回想起当初细啃 NumPy 之时,不少人不得不徘徊于各大搜索引擎及平台反复查找,找到的文档也许还很不系统。现在,如果有什么和 NumPy 的问题,只需要浏览这份官方中文文档就足够了。它足够的系统、全面且亲民。亲民到什么程度呢?网站还独一份的配备了「防脱发指南」。NumPy 是什么?它是大名鼎鼎的,使用 Python 进行科学计算的基础软件包,是 Python 生态系统中数据分析、机器学习、科学计算的主力军,极大简化了向量与矩阵的操作处理。除了计算外,它还包括了:
  • 功能强大的 N 维数组对象。

  • 精密广播功能函数。

  • 集成 C/C+和 Fortran 代码的工具。

  • 强大的线性代数、傅立叶变换和随机数功能

此次中文文档还强调了它两大特性:Ndarray 以及切片和索引,这两部分所涉及的功能在日常操作中是十分常见的。
  • Ndarray:一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。

  • 切片和索引:ndarray 对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

官网地址:https://www.NumPy.org.cn这个官方中文项目内容繁多,文章数量庞大。机器之心在这里节选了一些亮点内容,供读者参考。教程、文档应有尽有,中文版强调和深度学习联系从原理开始,中文版增加理论介绍板块这个开源的官方中文版教程可以说是非常全面了。它从最基本的理解 NumPy 开始,教程层层推进,直到让用户掌握进阶的使用方法。从内容来看,中文版不仅仅是官方英文版本的翻译,还额外增加了「文章」这一栏目。该栏目提供了对 NumPy 背后的矩阵运算原理的详细解释,使得使用者「知其然,也知其所以然」。这是英文版教程中没有的。以下为这一部分的目录,从这里可以看到,这部分内容主要介绍 NumPy 的基本理论,以及涉及到其应用的理论部分,如数据分析、神经网络实现,以及在其他代码库中的接口等。基础篇
  • 理解 NumPy

  • NumPy 简单入门教程

  • Python NumPy 教程

  • 创建 NumPy 数组的不同方式

  • NumPy 中的矩阵和向量

进阶篇

  • NumPy 数据分析练习

  • NumPy 神经网络

  • 使用 NumPy 进行数组编程

  • NumPy 实现k均值聚类算法

  • NumPy 实现DNC、RNN和LSTM神经网络算法

其他篇

  • OpenCV中的图像的基本操作

  • MinPy:MXNet后端的NumPy接口

我们截取了这些文章的部分内容,可以看到,这里不仅仅会讲 NumPy 所实现的功能,还提供了原理的图解。

228080e02361cea0afb7edd0e03812fc.png

对于多维数组的直观讲解(部分),可以看出官方提供了很好的理论解释和图示。注意和深度学习的联系另一方面,NumPy 中文版教程注意到了深度学习近来的发展趋势,因此推出了结合 NumPy 和百度飞桨框架的深度学习教程。可以说,NumPy 不仅仅只是科学计算工具了,而是深度学习社区的重要组成部分。如下为这一部分的内容,可以看到,神经网络相关的所有内容,包括原理和相关实现都涵盖到了。在这部分还有一个 7 日的深度学习入门课程,供小白用户参考。深度学习基础教程
  • 前言

  • 线性回归

  • 数字识别

  • 图像分类

  • 词向量

  • 个性化推荐

  • 情感分析

  • 语义角色标注

  • 机器翻译

  • 生成对抗网络

七日入门深度学习(正在更新)

  • Day 1:初识深度学习

  • Day 1:如何快速入门深度学习?

  • Day 2:图像识别基础与实战

  • Day 3:目标检测基础与实践(一)

  • Day 3:目标检测实战-RCNN算法讲解

  • Day 3:目标检测实战-YOLOv3检测物体

以如下代码为例,这是一个线性回归神经网络构建的代码部分。可以看到,代码使用 NumPy 进行加载和预处理,并使用飞桨构建数据分批等的相关函数。

feature_names = [
    'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
    'PTRATIO', 'B', 'LSTAT', 'convert'
]
feature_num = len(feature_names)
data = np.fromfile(filename, sep=' ') # 从文件中读取原始数据
data = data.reshape(data.shape[0] // feature_num, feature_num)
maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(axis=0)/data.shape[0]

for i in six.moves.range(feature_num-1):
   data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) # six.moves可以兼容python2和python3

ratio = 0.8 # 训练集和验证集的划分比例
offset = int(data.shape[0]*ratio)
train_data = data[:offset]
test_data = data[offset:]

def reader_creator(train_data):  
    def reader():  
        for d in train_data:  
            yield d[:-1], d[-1:]  
    return reader

train_reader = paddle.batch(
    paddle.reader.shuffle(
        reader_creator(train_data), buf_size=500),
        batch_size=BATCH_SIZE)

test_reader = paddle.batch(
    paddle.reader.shuffle(
        reader_creator(test_data), buf_size=500),
        batch_size=BATCH_SIZE)
用户文档和参考手册:覆盖 NumPy 的一切当然,最核心的部分当然是 NumPy 本身的文档了。中文版中对用户的使用文档和 NumPy 所有 API 都进行了翻译和整理工作,基本上用户需要的内容都可以在这里找到。用户文档目录如下,这里还贴心地提供了和「竞品」Matlab 的比较,以及 NumPy 在 C 语言下的 API 使用方法。

  • NumPy 介绍

  • 快速入门教程

  • NumPy 基础知识

  • 其他杂项

  • 与 Matlab 比较

  • 从源代码构建

  • 使用 NumPy 的 C-API

从这里可以看到,官方中文版真的是诚意满满。不仅提供原始文档的翻译,还加上了包括深度学习教程、其他来源的功能+原理解读材料。对于刚上手 NumPy 的人来说,这就是最佳的学习教程。不管是自学也好,还是用于开发也好,都是极好的。其他资源及文档如果读到这里你还不过瘾?没关系,官网还有相关配套的文章及视频,让你多样化地保持新鲜感:442cb31983d291681e17c6c746aa4db1.png另外,独有一份的防脱发指南让你入坑之时再无后顾之忧:

bb1413be1c7df3fc9ed182b783722705.png

面向开发者还单独有一份开发者指南,这是一份详细的操作清单,如何合理的配置及使用开发环境等一系列问题都已被包含在内。
  • NumPy 行为准则

  • Git 教程

  • 设置和使用您的开发环境

  • 开发流程

  • NumPy 基准测试

  • NumPy C 风格指南

  • 发布一个版本

  • NumPy 治理

NumPy 的用户数量庞大,开发者社区也非常繁荣。从包括 PyTorch、NumPy 等开源工具陆续推出中文版文档来看,中文世界在机器学习领域受到了更大的关注。b932c418a2b7ca03c26ecd09a24434f5.gif 欢迎社会各界加入『运筹OR帷幄』算法知识星球!随着算法相关专业热度的提升,考研读博、留学申请、求职的难度也在相应飙升,『运筹OR帷幄』建立了【算法社区】知识星球,涵盖运筹学、数据科学、人工智能、管理科学、工业工程等相关专业,集结社区35W专业受众的力量,提供给大家一个共同的学习交流平台,结交志同道合的伙伴。ab8fb032f2328d641ee714bab4a03284.png# 加入知识星球,您将收获以下福利 #
  • 依托『运筹OR帷幄』35w+专业受众和35+细分领域硕博微信群的算法技术交流
  • 与国内外Top名校教授|博士和名企研发高管一起交流算法相关技术干货
  • 海量学界|业界(独家内推)招聘|实习机会发布,申请|求职面试经验交流
  • 数学模型|算法|论文|学习资料分享与提问,倡导同行交流,寻找志同道合的“队友”
  • 每月开展一次“人气话题”和“人气回答”评选,百元红包奖励分享和互动
  • 每月一次“领读人”带队Paper|教学视频|原创技术推文等线上Meetup小组学习
  • 享受『运筹OR帷幄』各大城市线下Meetup免费入场资格,拓展人脉

相关文章推荐

Numpy和Pandas合璧,打牢机器学习和深度学习的基本功

点击蓝字标题,即可阅读《【数据科学】Pandas数据分析入门》

本文福利

可以在 公众号后台 回复关键词:“ DS 获取大量由我平台编辑精心整理的数据科学资料,如果觉得有用, 请勿吝啬你的留言和赞哦!

—— 完 ——

1f243cfe59e062b68bb7287ce27d33dd.gif

ab7319da366e925cc0d296de84690a42.png84127c9a7d7b6ce2e4be8d0958ffe44e.png93bf94962e00b830848bfdaba8e75619.pnge80d955b70d3b1c0c536eaf043c94b87.gife0781ac8ccb49a132824c7668e544f7b.gif

文章须知

文章作者:机器之心

责任编辑:书生

审核编辑:阿春

微信编辑:玖蓁

本文转载自公众号 机器之心

(ID:almosthuman2014)

原文链接:「最全」实至名归,NumPy 官方早有中文教程,结合深度学习,还有防脱发指南




推荐阅读
author-avatar
书友85467040
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有