热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

anchorbox

参考:吴恩达卷积神经网络anchorbox是目标检测中十分重要的概念,虽然最近很多论文都提出anchorfree,但是深入理解anchorbox对我们理解目前主流的fasterrc

参考:吴恩达 卷积神经网络

anchor box 是目标检测中十分重要的概念,虽然最近很多论文都提出anchor free,但是深入理解anchor box对我们理解目前主流的faster rcnn,ssd,yolov2v3等算法很有帮助。



传统方法:

1.滑动窗口:顾名思义,采用一个固定大小的窗口在图上不断滑动截取固定大小的图片,从左到右,从上到下,遍历整个图片。依次判断截取下的框包不包含目标。然后改变框的尺寸继续搜索,类似一种暴力穷举的方法,的确可行,但是但图片尺寸较大的时候,该方法特别浪费时间。(滑动操作可用卷积来实现

2.Regional Proposal(RPN):建议框,即在滑动窗口的思想上,提取出所有可能包含识別目标的一些候迭区域,相比于传统的候选区域而言,Regional Proposal数量上会更少(通常1K~2K个) ,质量更高。



为什么需要anchor box?

如上图,基于滑动窗口的方法,还有yolov1里的方法,每个网格的框只能预测一个类别,不能进行多类预测。提出anchor box可以很好的解决这个问题。

如图,车和人的中心点正好重合在一点,如果仍然采用原来的输出y,那么将无法结果。必须从两个中选一个。

采用anchor box的思路是,预先定义两个(一般为很多个)不同形状的anchor box,我们需要做的就是将预测结果与这两个anchor box关联起来,

也就是定义输出为右边这个向量y的形式。

对于行人而言,其形状更类似于anchor box1,所以将其分配到y的上半部分,其中行人的类别为为1,即c1=1,c2=c3=0。同理,把车分配到y的下半部分。

和之前相同的是,每个对象都根据中点位置分配到中点所在的网格里,与之间不同的是,每个对象还分配到一个和ground truth iou最高的anchor box ,也就是所,这个对象分配到一对(网格,anchor box),如下图:

如果该网格里只有人,没有车,那么此时输出y中 anchor box2分量还是不变,anchor box1置信度为0,其他的do not care,如下图:

  还有一种情况,两个对象都在同一个网格中,且两个对象的anchor box 形状也一样。这是算法处理不好的另一种情况,你需要引入一些打破僵局的默认手段,专门处理这种情况,希望你的数据集里不会出现这种情况,其实出现的情况不多,所以对性能的影响应该不会很大。

  建立anchor box的原因是为了处理两个对象出现在同一个格子的情况,实际中这种情况很少发生,特别是如果你用的是19×19网格而不是3×3的网格,两个对象中点处于361个格子中同一个格子的概率很低,确实会出现,但出现频率不高。



怎么选择anchor box?

  人们一般手工指定anchor box形状,你可以选择5到10个anchor box形状,覆盖到多种不同的形状,可以涵盖你想要检测的对象的各种形状。还有一个更好的方法,在yolov2中使用的kmeans算法,可以将两类对象形状聚类,如果我们用它来选择一组anchor box,选择最具有代表性的一组anchor box,可以代表你试图检测的十几个对象类别,但这其实是自动选择anchor box的高级方法。如果你就人工选择一些形状,合理的考虑到所有对象的形状,你预计会检测的很高很瘦或者很宽很胖的对象,这应该也不难做。



推荐阅读
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 深入理解Java中的Collection接口与Collections工具类
    本文详细解析了Java中Collection接口和Collections工具类的区别与联系,帮助开发者更好地理解和使用这两个核心组件。 ... [详细]
  • 本文探讨了如何在 PHP 的 Eloquent ORM 中实现数据表之间的关联查询,并通过具体示例详细解释了如何将关联数据嵌入到查询结果中。这不仅提高了数据查询的效率,还简化了代码逻辑。 ... [详细]
  • 信用评分卡的Python实现与评估
    本文介绍如何使用Python构建和评估信用评分卡模型,涵盖数据预处理、模型训练及验证指标选择。附带详细代码示例和视频教程链接。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
author-avatar
sdfsadfwforever
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有