热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

adaboostmhmatlab,adaboost、adaboost.m1、adaboost.m2简介

集成学习常见的两种集成方案为bagging和boosting,其中bagging是一种基于投票的并行方案,boosting是一种基于改变原始数据集分布的

集成学习常见的两种集成方案为bagging和boosting,其中bagging是一种基于投票的并行方案,boosting是一种基于改变原始数据集分布的迭代串行方案(某些环节也可并行)。bagging的代表算法为随机森林,boosting的代表算法有adaboost、gbdt、xgb等。

121980ea415d

bagging方案图:从训练集从进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果

121980ea415d

boosting方案图:训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化。对所有基模型预测的结果进行线性综合产生最终的预测结果:

AdaBoost算法有AdaBoost.M1和AdaBoost.M2两种算法,AdaBoost.M1是我们通常所说的Discrete AdaBoost,而AdaBoost.M2是M1的泛化形式。adaboost是由Yoav Freund和Robert E. Schapire 首先提出来的一种用于二分类问题的集成方法;紧接着出现的Adaboost.M1将二分类扩展到多分类问题;而AdaBoost.M2不仅可以处理多分类问题,还引入了置信度的概念,进一步扩展了AdaBoost算法;AdaBoostMH算法则是基于AdaBoost.M1算法的一种标签转化方案的多标签算法。关于AdaBoost算法的一个结论是:当弱分类器算法使用简单的分类方法时,boosting的效果明显地统一地比bagging要好.当弱分类器算法使用C4.5时,boosting比bagging较好,但是没有前者明显。后来又有学者提出了解决多标签问题的AdaBoost.MH和AdaBoost.MR算法,其中AdaBoost.MH算法的一种形式又被称为Real Boost算法---弱分类器输出一个可能度,该值的范围是整个R, 和与之相应的权值调整,强分类器生成的AdaBoost算法。事实上:Discrete AdaBoost是指,弱分类器的输出值限定在{-1,+1},每个弱分类器有相应的权值,从而构成一个强分类器。adaboost采用的集成方式是对基分类器的结果进行加权求和,如果结果大于0则样本被分为正类,如果结果小于0则样本被分为负类。adaboost算法要做的就是每次迭代过程中,赋予被错误分类的样本更大的权重。

1). adaboost算法

121980ea415d

adaboost算法要做的就是每次迭代过程中,赋予被错误分类的样本更大的权重

最终一个样本的预测值为:

121980ea415d

adaboost采用的集成方式是对基分类器的结果进行加权求和,如果结果大于0则样本被分为正类,如果结果小于0则样本被分为负类

从算法步骤中我们可以看出,权重的更新方式为:

121980ea415d

如果一个样本被上一个分类器正确分类,那么它的权重将乘以e**-at(大于0小于1),如果这个样本被上一个分类器错误分类,那么它的权重将乘以e**at。也就是说错误分类的样本权值相对于正确分类的样本权值扩大了e**2at倍,而e**2at=(1-et)/et。常用的改变权重方式为样本抽样和标签系数转化。

2).adaboost.m1算法

121980ea415d

adaboost算法对权值更新函数做了更改使其适用于多分类问题

adaboost.m1算法和adaboost算法的不同点在于:

a.H(x)的形式发生了变化,没用使用sign()映射转化,但是其本质任然没有发生改变,任然可以看做是对基分类器的分类结果进行头片产生最终结果,而且基分类器的权重本质上也为ln(1-et)/et。

b.两者的本质区别在于第10步,对比我们可以发现为了适应多分类问题,adaboost的权值更新函数做了一定的调整。权值更新方案为:

如果一个样本被上一个分类器错误分类,那么它的权重不变,如果这个样本被上一个分类器正确分类,那么它的权重将乘以et/(1-et),也就是说错误分类的样本权值相对于正确分类的样本权值扩大了(1-et)/et倍(因为如果更改分类错误样本我们不知道其具体偏向哪个类别错误)。

3).adaboost.m2算法

121980ea415d

在adaboost.M2中算法对基分类器的输出形式做出了限制,给定一个样本,基分类器对c1到cm的类都输出一个介于0和1之间的值,表示这个样本属于某个类的概率,且这些值相加等于1

adaboost.M2的思路还是提高难以被正确分类的样本的权重,例如样本可以被分为A,B,C三类,某个样本xi真实类别标签为A,第k轮分类器对xi的分类结果为:

类别                                 A                             B                             C

概率                                0.1                          0.5                           0.6

显然当前基分类器对这个样本的分类不理想,那么adaboost.M2算法会根据步骤8来计算计算当前基分类器的误差,接着步骤10会修改错误类B,C的权重,进而在下一次迭代的步骤6中更新这个样本的权重。



推荐阅读
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 无线通信设备的OTA测试及其重要性
    随着智能设备和无线通信技术的广泛应用,确保这些产品在各种应用场景中的稳定性和可靠性变得至关重要。OTA(Over The Air)测试作为一种关键手段,能够有效验证无线传输设备的整体性能,解决通信问题并提升用户体验。 ... [详细]
  • 本文探讨了Java编程的核心要素,特别是其面向对象的特性,并详细介绍了Java虚拟机、类装载器体系结构、Java类文件和Java API等关键技术。这些技术使得Java成为一种功能强大且易于使用的编程语言。 ... [详细]
  • 基于结构相似性的HOPC算法:多模态遥感影像配准方法及Matlab实现
    本文介绍了一种基于结构相似性的多模态遥感影像配准方法——HOPC算法,该算法通过相位一致性模型构建几何结构特征描述符,能够有效应对多模态影像间的非线性辐射差异。文章详细阐述了HOPC算法的原理、实验结果及其在多种遥感影像中的应用,并提供了相应的Matlab代码。 ... [详细]
  • Kubernetes 持久化存储与数据卷详解
    本文深入探讨 Kubernetes 中持久化存储的使用场景、PV/PVC/StorageClass 的基本操作及其实现原理,旨在帮助读者理解如何高效管理容器化应用的数据持久化需求。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 阿里云ecs怎么配置php环境,阿里云ecs配置选择 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • 本书系统介绍了概率论的基础概念,包括样本空间、事件及其概率定义,条件概率和独立性,并深入探讨了贝叶斯公式。随后,书中详细讲解了多种类型的随机变量,如离散型(伯努利、二项、几何、泊松)和连续型(均匀、指数、伽玛、正态)。此外,还涵盖了随机变量的期望值计算、联合分布特性、矩母函数以及极限定理等内容。特别地,本书对马尔可夫链、泊松过程及其扩展形式进行了详尽分析,为读者提供了丰富的理论依据和实际应用案例。 ... [详细]
  • 解决SVN图标显示异常问题的综合指南
    本文详细探讨了SVN图标无法正常显示的问题,并提供了多种有效的解决方案,涵盖不同环境下的具体操作步骤。通过本文,您将了解如何排查和修复这些常见的SVN图标显示故障。 ... [详细]
  • 方法:1 配置数据库basediros.path.abspath(os.path.dirname(__file__))  #获取当前文件的绝对路径appFlask(__name__ ... [详细]
  • Qt QTableView 内嵌控件的实现方法
    本文详细介绍了在 Qt QTableView 中嵌入控件的多种方法,包括使用 QItemDelegate、setIndexWidget 和 setIndexWidget 结合布局管理器。每种方法都有其适用场景和优缺点。 ... [详细]
  • 2018-2019学年第六周《Java数据结构与算法》学习总结
    本文总结了2018-2019学年第六周在《Java数据结构与算法》课程中的学习内容,重点介绍了非线性数据结构——树的相关知识及其应用。 ... [详细]
author-avatar
巴香香
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有