作者:暖暖de苹果的马甲 | 来源:互联网 | 2023-10-11 13:10
标准形式$$\begin{aligned}\min\quad\bf{cx}\\s.t.\quad\bf{Ax}\bf{b}\\x\ge0\end{aligned}$$其中\(A\)
标准形式
$$ \begin{aligned}
\min \quad &\bf{cx} \\
s.t. \quad &\bf{Ax}=\bf{b}\\
&x\ge0
\end{aligned}$$
其中\(A\)是\(m\times n\)矩阵,\(c\)是\(n\)维行向量, \(b\)是\(m\)维列向量。
最优极点
1. 如果线性规划存在最优解,那么最优解一定会在某个极点上达到。
最优基本可行解
假设\(A\)的秩是\(m\),又假设\(A=[B,N]\),其中\(B\)是\(m\)阶可逆矩阵。
为什么A的秩是\(m\)?
令$$(B,N)\begin{bmatrix} x_B \\x_N\end{bmatrix}= b$$
经过运算得到$$x=B^{-1}b-B^{-1}Nx_N$$
那么 \(x_N\)就是自由项,简单起见可以设为\(0\)向量。得到基本可行解:
$$x=\begin{bmatrix}x_B \\x_N\end{bmatrix}=\begin{bmatrix}B^{-1}b \\ 0 \end{bmatrix}$$
称\(B\)为基矩阵,简称基;\(x_B\)为基变量。