热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Zookeeper在Hadoop生态系统中的关键作用与应用分析

Zookeeper作为ApacheHadoop生态系统中的一个重要组件,主要致力于解决分布式应用中的常见数据管理难题。它提供了统一的命名服务、状态同步服务以及集群管理功能,有效提升了分布式系统的可靠性和可维护性。此外,Zookeeper还支持配置管理和临时节点管理,进一步增强了其在复杂分布式环境中的应用价值。
Zookeeper 简介

Zookeeper 分布式服务框架是 Apache Hadoop 的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步服务、集群管理、分布式应用配置项的管理等。


Hadoop简介
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop主要包含两部分:HDFS,YARN。
HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
YARN 主要包含ResourceManager(RM),以及NodeManager(NM),ApplicationManager(AM),Container四个部分组成,其中RM最为核心,作为全局的资源管理器,他主要负责系统的资源管理与分配关于Hadoop的的更多介绍可参考:http://hadoop.apache.org/
Hadoop面临的问题

在Hadoop中,不管是HDFS,还是YARN,都存在一个问题,由于HDFS使用NameNode管理众多的DataNode节点,YARN使用ResourceManager管理系统的资源分配,所以如果NN节点或者是RM节点出现问题,都会导致整个集群不能正常使用,为了解决这个问题Hadoop针对NN以及RM引入了 支持Active/StandBy 模式的HA架构。
正常情况下对于NN以及RM,分别只会有一个Active节点,其他节点为Standby,Active节点负责对外提供服务,当Active的节点由于异常不能对外提供服务时,standby节点会转化为Active节点,继续提供服务
Zookeeper帮助Hadoop解决的问题 下文以YARN为例,描述Zookeeper是如何帮助YARN实现HA机制的
  1. 创建锁节点
    所有的ResourceManager在启动的时候会竞争写一个/yarn-leader-election/pseudo-yarn-rm-cluster节点(临时节点),创建成功的ResourceManager节点变成Active节点,其他的切换为StandBy
  2. 注册Watcher节点
    所有的standby的ResourceManager节点会向/yarn-leader-election/pseudo-yarn-rm-cluster节点注册一个Watcher
  3. 主备切换
    当Active的ResourceManager节点出现异常或挂掉时,起在zookeeper上创建的临时节点也会被删除,standy的ResourceManager节点检测到该节点发生变化时,会重新发起竞争,直到产生一个Active节点
  4. 如果集群中存在两个ResourceManager节点RM1,RM2,在通过竞争操作后,RM1变成了Active后,如果某个时间段RM1由于资源损耗比较严重,产生了假死的现象,此时的zookeeper会以为RM1这台机器出现了故障,于是发起新一轮的竞选,选了RM2作为Active,在RM2变成Active后,RM1恢复了服务但是它任然以为自己是Active的,此时就出现了两个Active的情况,这种情况又称为“脑裂”,为了解决这种问题可以在创建根节点的时候引入ACL控制,这样的话当RM1恢复后尝试更新数据时,会发现对应的节点必须提供RM2的ACL信息才可以更新对应的数据
  5. 在Hadoop中负责解决该问题的组件是Hadoop-common 中的ActiveStandElector组件


HDFS的原理与之ResourceManager类似



推荐阅读
  • 从理想主义者的内心深处萌发的技术信仰,推动了云原生技术在全球范围内的快速发展。本文将带你深入了解阿里巴巴在开源领域的贡献与成就。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • mybatis 详解(七)一对一、一对多、多对多
    mybatis详解(七)------一 ... [详细]
  • 本文详细介绍了 Spark 中的弹性分布式数据集(RDD)及其常见的操作方法,包括 union、intersection、cartesian、subtract、join、cogroup 等转换操作,以及 count、collect、reduce、take、foreach、first、saveAsTextFile 等行动操作。 ... [详细]
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • Hadoop 2.6 主要由 HDFS 和 YARN 两大部分组成,其中 YARN 包含了运行在 ResourceManager 的 JVM 中的组件以及在 NodeManager 中运行的部分。本文深入探讨了 Hadoop 2.6 日志文件的解析方法,并详细介绍了 MapReduce 日志管理的最佳实践,旨在帮助用户更好地理解和优化日志处理流程,提高系统运维效率。 ... [详细]
  • Hadoop + Spark安装(三) —— 调hadoop
    ***************************测试hadoop及问题跟进***************************执行以下语句报错datahadoop-2.9. ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
  • 本文总结了近年来在实际项目中使用消息中间件的经验和常见问题,旨在为Java初学者和中级开发者提供实用的参考。文章详细介绍了消息中间件在分布式系统中的作用,以及如何通过消息中间件实现高可用性和可扩展性。 ... [详细]
  • 本文介绍了如何查看PHP网站及其源码的方法,包括环境搭建、本地测试、源码查看和在线查找等步骤。 ... [详细]
  • 深入探索Node.js新框架:Nest.js第六篇
    在本文中,我们将深入探讨Node.js的新框架Nest.js,并通过一个完整的示例来展示其强大功能。我们将使用多个装饰器创建一个基本控制器,该控制器提供了多种方法来访问和操作内部数据,涵盖了常见的CRUD操作。此外,我们还将详细介绍Nest.js的核心概念和最佳实践,帮助读者更好地理解和应用这一现代框架。 ... [详细]
author-avatar
痛彻心扉哥哥_742
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有