热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

正则化2

一看就懂】机器学习之L1和L2正则化尘缘墨语百家号03-2315:18摘要:本文主要分为三部分,先讲述什么是正则化,再讲L1和L2正则化数

一看就懂】机器学习之L1和L2正则化

尘缘墨语

百家号03-2315:18

摘要:本文主要分为三部分,先讲述什么是正则化,再讲L1和L2正则化数学原理,最后小结对比。

一、什么是正则化

上篇机器学习之线性方程与学习率中引入损失函数,以便寻找最优权重W。

然而正如大名鼎鼎的奥卡姆剃刀定律,

模型越复杂,越容易过拟合。

因此,原先以最小化损失(经验风险最小化)为目标:

现在以最小化损失和模型复杂度(结构风险最小化)为目标:

通过降低复杂模型的复杂度来防止过拟合的规则称为正则化。

二、L1 和 L2 正则化的数学原理

机器学习中最常见的即L1和L2正则化。

1. L1正则化,即原损失函数 + 所有权重的平均绝对值 * λ ,其中λ >0

根据损失更新ω,需要先对ω求导:

那么权重ω的更新规则为:

比原始的更新规则多出了η * λ * sgn(ω)/n。

可见每次更新,ω都是往0靠,即使网络中的权重尽可能为0。

2. L2正则化,即原损失函数 + 所有权重平方和的平均值 * λ / 2 , λ>0

同样,需要先对ω求导:

那么权重ω的更新规则为:

原始的更新规则ω系数为1,现在为 1ηλ/n 。

因为η、λ、n都>0,所以 1ηλ/n

三、L1和L2正则化小结

L1 正则化可以理解为每次从权重中减去一个常数。

L2 正则化可以理解为每次移除权重的 x%。

本质都是为了降低模型的复杂度,防止过拟合。

本文由百家号作者上传并发布,百家号仅提供信息发布平台。文章仅代表作者个人观点,不代表百度立场。未经作者许可,不得转载。


转:https://www.cnblogs.com/fpzs/p/9835153.html



推荐阅读
author-avatar
pengminglin1968
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有