热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

在线作图丨差异分析——ANOSIM相似性分析

Question1:什么是ANOSIM分析?ANOSIM分析(AnalysisofSimilarities)即相似性分析,主要用于分析高维数据组间相似性,为数据间差异显著性评价提供

Question 1:什么是ANOSIM分析?

ANOSIM分析(Analysis of Similarities)即相似性分析,主要用于分析高维数据组间相似性,为数据间差异显著性评价提供依据。在一些高维数据分析中,需要使用PCA、PCoA、NMDS等方法进行降维,但这些方法并不显示组间差异的显著性指标,因此可以使用ANOSIM分析解决此问题。
ANOSIM相似性分析是一种非参数检验,用来检验组间(两组或多组)差异是否显著大于组内差异,从而判断分组是否有意义。首先利用Bray-Curtis算法计算两两样品间的距离,然后将所有距离从小到大进行排序,并计算R和P值。R值用于不同组间属否存在差异,P值用于说明是否存在显著差异。

Q2:如何应用ANOSIM?

ANOSIM was used to compare within- and between-group similarity through a distance measure, to test the null hypothesis that the average rank similarity between samples within a group is the same as the average rank similarity between samples belonging to different groups.
《在线作图丨差异分析——ANOSIM相似性分析》
参考文献:
Effect of Different Hemodialysis Methods on Microbiota in Uremic Patients

Q3:如何不使用R语言进行ANOSIM分析?

小编和他的小伙伴们开发了一个在线的作图小网站——云图图(www.cloudtutu.com,免费的哦~),操作步骤如下:
①登录网址:https://www.cloudtutu.com/#/index(推荐使用360或者谷歌浏览器)
②输入用户名和密码(小编已经为大家填好了,如果不显示可添加文末二维码添加小编获取),输入验证码后即可登录,不必注册,直接使用,不必担心隐私泄露,是不是诚意满满~
③登录后在工具一栏(全部分析)里找到ANOSIM分析,点击进入;
④请按照界面右侧的说明书或者下文进行操作,即可在2分钟内获得一张精美的ANOSIM分析图喽~
话不多说,我们开始行动吧~

Step 1 上传数据

※目前平台仅支持.txt(制表符分隔)文本文件或者.csv文件的文件上传。
平台可对不规范的数据格式进行部分处理,但还是请您尽量按照示例数据的格式调整数据,以便机器可以识别。
a)准备一个数据矩阵(如微生物OTU表、物种丰度表、基因表达量矩阵、代谢物含量表,也可以是测量数据,例如身高、体重、表型等);
b)表格需要带表头和列名,第一行为样本名,第一列为指标名(如OTU ID,gene name等)。
c)请提交txt(制表符分隔)文本文件或者.csv文件。操作方法为:全选excel中的所有内容(ctrl+A),复制到记事本中,将记事本文件另存后上传该文件。
※传完文件后一定要填写说明书下方的分组信息!
《在线作图丨差异分析——ANOSIM相似性分析》

Step 2 设置参数

2.1 在界面右侧编辑分组信息:需要对所有样品进行分组,本网站支持在线修改分组名称。不填写分组信息无法运算!
《在线作图丨差异分析——ANOSIM相似性分析》
Step 3 下载文件

点击运行后等待5-10秒即可下载结果,平台提供PDF格式的矢量图和表格下载。表格中包含了组间相关性的P值和R值可以用于后续分析。
《在线作图丨差异分析——ANOSIM相似性分析》

Step 4 作图后处理

TUTU云平台提供的是PDF格式的矢量图,可通过矢量图处理软件(Inkscape或AI)进行编辑和调整(如:文字字体,文字大小,图片分辨率等)。图形处理软件和使用方法可扫描文后的二维码添加小编微信获取。下载表格文件可以用于后续分析。
《在线作图丨差异分析——ANOSIM相似性分析》

结果说明

边框代表上下四分位数间距(Interquartile range,IQR),横线代表中位值,上下触须分别代表上下四分位以外的1.5倍IQR范围。Between反应组间差异,A、B、C组分别表示组内差异。如果各个箱线图的槽口互相不重合,说明各组中位数有差异。

It can be seen from Figure X that there are significant differences in colony distribution between the CK group and the dialysis group; there are also significant differences in colony distribution among the three groups of patients with different dialysis methods. Between represents the difference between groups; others are within groups; the greater the distance is, the greater the difference is; and the thickness is the sample size.

《在线作图丨差异分析——ANOSIM相似性分析》
尊敬的用户,如果图图云平台在您的科研中有幸提供了些许帮助,我们期望您能在方法学或者致谢中提及我们,引用方法如下:XXXX analysis was performed on Tutools platform (https://www.cloudtutu.com/#/index), a free online data analysis website. 目前平台还处于测试阶段,使用过程中有任何疑问或者报错欢迎随时联系小编反馈。您的反馈和建议是我们最大的动力~


推荐阅读
  • 微信公众号推送模板40036问题
    返回码错误码描述说明40001invalidcredential不合法的调用凭证40002invalidgrant_type不合法的grant_type40003invalidop ... [详细]
  • Android 构建基础流程详解
    Android 构建基础流程详解 ... [详细]
  • 大家好,全新的技术专栏《从零开始掌握容器云网络实战》正式上线。该专栏将系统地介绍容器云网络的基础知识、核心技术和实际应用案例,帮助读者全面理解和掌握容器云网络的关键技术与实践方法。 ... [详细]
  • 近期,微信公众平台上的HTML5游戏引起了广泛讨论,预示着HTML5游戏将迎来新的发展机遇。磊友科技的赵霏,作为一名HTML5技术的倡导者,分享了他在微信平台上开发HTML5游戏的经验和见解。 ... [详细]
  • MATLAB实现Sobel边缘检测算法
    图像边缘是指图像中灰度值发生显著变化的区域。Sobel算子是一种常用的边缘检测方法,通过计算图像灰度值的梯度来检测边缘。本文介绍了Sobel算子的基本原理,并提供了基于MATLAB的实现代码。 ... [详细]
  • 解决Only fullscreen opaque activities can request orientation错误的方法
    本文介绍了在使用PictureSelectorLight第三方框架时遇到的Only fullscreen opaque activities can request orientation错误,并提供了一种有效的解决方案。 ... [详细]
  • 微信小程序详解:概念、功能与优势
    微信公众平台近期向200位开发者发送了小程序的内测邀请。许多人对微信小程序的概念还不是很清楚。本文将详细介绍微信小程序的定义、功能及其独特优势。 ... [详细]
  • MySQL 5.7 学习指南:SQLyog 中的主键、列属性和数据类型
    本文介绍了 MySQL 5.7 中主键(Primary Key)和自增(Auto-Increment)的概念,以及如何在 SQLyog 中设置这些属性。同时,还探讨了数据类型的分类和选择,以及列属性的设置方法。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 本文介绍了如何使用 Node.js 和 Express(4.x 及以上版本)构建高效的文件上传功能。通过引入 `multer` 中间件,可以轻松实现文件上传。首先,需要通过 `npm install multer` 安装该中间件。接着,在 Express 应用中配置 `multer`,以处理多部分表单数据。本文详细讲解了 `multer` 的基本用法和高级配置,帮助开发者快速搭建稳定可靠的文件上传服务。 ... [详细]
  • 类加载机制是Java虚拟机运行时的重要组成部分。本文深入解析了类加载过程的第二阶段,详细阐述了从类被加载到虚拟机内存开始,直至其从内存中卸载的整个生命周期。这一过程中,类经历了加载(Loading)、验证(Verification)等多个关键步骤。通过具体的实例和代码示例,本文探讨了每个阶段的具体操作和潜在问题,帮助读者全面理解类加载机制的内部运作。 ... [详细]
  • 在本文中,我们将详细介绍如何构建一个用于自动回复消息的XML类。当微信服务器接收到用户消息时,该类将生成相应的自动回复消息。以下是具体的代码实现:```phpclass We_Xml { // 代码内容}```通过这个类,开发者可以轻松地处理各种消息类型,并实现高效的自动回复功能。我们将深入探讨类的各个方法和属性,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 本文深入探讨了Java多线程环境下的同步机制及其应用,重点介绍了`synchronized`关键字的使用方法和原理。`synchronized`关键字主要用于确保多个线程在访问共享资源时的互斥性和原子性。通过具体示例,如在一个类中使用`synchronized`修饰方法,展示了如何实现线程安全的代码块。此外,文章还讨论了`ReentrantLock`等其他同步工具的优缺点,并提供了实际应用场景中的最佳实践。 ... [详细]
  • 本文深入探讨了 Git 与 SVN 的高效使用技巧,旨在帮助开发者轻松应对版本控制中的各种挑战。通过详细解析两种工具的核心功能与最佳实践,读者将能够更好地掌握版本管理的精髓,提高开发效率。 ... [详细]
author-avatar
酒心灵20609
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有