热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

云计算与粒计算的联系

【大咖・来了第7期】10月24日晚8点观看《智能导购对话机器人实践》云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。云计算是继20世纪80年代大型计算机到C/S转变

【大咖・来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》

云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。云计算是继20世纪80年代大型计算机到C/S转变之后,IT界的又一次巨变,它通过互联网将某计算任务分布到大量的计算机上,并可配置共享计算的资源池,且共享软件资源和信息可以按需提供给用户的一种技术。云计算真正作为一个新兴技术得到IT界认可是在2007年左右,经过这十年的普及和发展,云计算早已走进千万个数据中心,成为IT世界里炙手可热的技术门类,并可以在未来的一段时间内继续获得长足发展。云计算固然好,但也有不少的缺陷和使用限制,这样才出现了雾计算、霾计算等技术,这些技术都是针对云计算做的很好的补充,满足多样化的市场应用需求。本文也介绍一个新技术,就是粒计算,粒计算同样是和云计算有着千丝万缕的联系。

云计算与粒计算

其实,粒计算比云计算的概念出现得还早。在1997年时,美国一大学教授***在论文中提出了粒计算,这标志着涉及多学科的一个应用研究领域产生。此后,国外诸多学者对它进行了研究,提出了许多有关粒计算的理论、方法和模型,现已成为研究模糊的、不精确的、不完整的及海量信息处理的重要工具。粒计算是一个含义广泛的术语,覆盖了所有有关粒的理论、方法学、技术和工具的研究,并认为粒计算是模糊信息粒化、Rough集理论和区间计算的超集,是粒数学的子集。粒计算是在问题求解中使用粒子,构建信息粒化,将一类对象基于不可分辨关系、相似性等特征划分为一系列粒。粒计算模型分为两大类:一类以处理不确定性为主要目标,如以模糊处理为基础的计算模型,以粗糙集为基础的模型,侧重于计算对象的不确定性处理。模糊概念是粒计算的主要组成部分;另一类则以多粒度计算为目标,如商空间理论。从不同的粒度上分层次地处理它们,降低处理复杂问题的复杂性。信息粒广泛存在于现实世界中,是对现实的抽象。

粒计算虽然诞生得早,并没有云计算发展得快,只是到最近才火了起来,这来源于人工智能和大数据技术的热宠。在这两个方面进行粒计算,意义不同凡响。人工智能和大数据的诞生,是因为人们试图从人类思维和生物界的一些规律中得到启发,创建相应的计算模型,应用到信息科学中去,而粒计算则在更高层次上模拟了人类的思维规律。当人工智能掌握“粒计算”,就会像显微镜一样,能分析海量信息,这将对科学界和人类社会都产生深远影响。当大数据遇到了粒计算,可以对大数据所表示的领域信息进行粒度分析,确定可能的粒度层次数目、各层次上信息粒的语义以及根据领域知识能够断言的信息粒之间的相关关系,这些粒度分析结果及其质量可直接影响后续的大数据处理的准确性和效率。目前,大数据开源平台的蓬勃发展,适用于不同应用场合的系统层出不穷,针对具体数据选择适合的多粒度建模,实现对特定粒计算模型的支持,可以更好地进行海量数据分析。所以,人工智能和大数据再火,也需要依仗粒计算等这些新技术来实现,否则就是空中楼阁,没有任何现实意义。海量的数据中大量都是不确定的,模糊的,这给粒计算提供了广阔的发展空间。

不仅在大数据、人工智能这些领域,在云计算里,粒计算同样受欢迎。云计算是一种计算资源,集合了海量的数据处理,与大数据、人工智能都有着紧密联系,而粒计算正是处理海量数据,尤其是不确定性数据的好手。云计算可以根据用户需求通过网络对松散耦合的粗细粒度应用组件进行分布式部署、组合和使用,形成多粒度或者可变粒度的服务。云计算的技术底层架构中,分布式操作系统也支撑软件的多粒度和可变粒度。由于云计算本身的通用性特点,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行,这都需要对海量的不确定数据进行计算处理,这时就需要粒计算。云计算提供的服务也是个性化的,是多粒度和可变粒度的,提供的是细粒度服务。在云计算中,为了保证计算和存储等操作的完整性,在实现上要考虑很多大规模分布式计算机集群进行海量数据处理时容错处理问题,在出现部分失效的情况下计算任务仍然能够正确执行,这时粒计算就会发挥作用。粒计算本身就可以处理大量具有不确定性的数据,当海量数据中掺杂着无用甚至是错误的数据,在粒计算的处理下,依然能够得到***的正确结果,粒计算本身就具有容错性。粒计算还可以将计算任务更加优化地分解和并行执行,对于每个未完成子任务,粒计算都会启动一个备份子任务同时执行,无论初始任务还是备份子任务处理完成,该子任务都会立即被标记为完成状态,通过备份任务机制可以有效避免因个别节点处理速度过慢而延误整个任务的处理速度,粒计算可以在云计算中大展手脚。

云计算是一种新型的超级计算方式,以数据为中心,是一种数据密集型的超级计算,对海量数据处理操作非常频繁的,需要新的算法适应,这时粒计算应运而生,将会更好地完成海量数据处理任务。粒计算是云计算的***拍档,随着云计算要处理的数据量越来越庞大,大量无用甚至错误的数据影响到了云计算的处理效率和结果,引入粒计算后,可以有效提升云计算的计算效率,充分地发挥出云计算的优势。


推荐阅读
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
  • 创邻科技成功举办Graph+X生态合作伙伴大会,30余家行业领军企业共聚杭州
    9月22日,创邻科技在杭州举办“Graph+X”生态合作伙伴大会,汇聚了超过30家行业头部企业的50多位企业家和技术领袖,共同探讨图技术的前沿应用与发展前景。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 智能投顾机器人:创业者如何应对新挑战?
    随着智能投顾技术在二级市场的兴起,针对一级市场的智能投顾也逐渐崭露头角。近日,一款名为阿尔妮塔的人工智能创投机器人正式发布,它将如何改变投资人的工作方式和创业者的融资策略? ... [详细]
  • 江苏启动鲲鹏生态产业园首批应用孵化项目
    2019年9月19日,在华为全联接大会上,江苏鲲鹏生态产业园正式启动了首批鲲鹏应用孵化项目。南京市委常委、江北新区党工委专职副书记罗群等多位嘉宾出席并见证了这一重要时刻。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 本文探讨了MariaDB在当前数据库市场中的地位和挑战,分析其可能面临的困境,并提出了对未来发展的几点看法。 ... [详细]
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • 本文深入探讨了MySQL中常见的面试问题,包括事务隔离级别、存储引擎选择、索引结构及优化等关键知识点。通过详细解析,帮助读者在面对BAT等大厂面试时更加从容。 ... [详细]
  • 本文探讨了当前技术发展趋势,特别是大数据和人工智能如何推动工业互联网的发展。文章分析了全球主要国家在工业互联网领域的进展,并展望了未来工业互联网技术的发展方向。 ... [详细]
  • C语言入门精选教程与书籍推荐
    本文精选了几本适合不同水平学习者的C语言书籍,从基础入门到进阶提高,帮助读者全面掌握C语言的核心知识和技术。 ... [详细]
  • 多智能体深度强化学习中的分布式奖励估计
    本文探讨了在多智能体系统中应用分布式奖励估计技术,以解决由于环境和代理互动引起的奖励不确定性问题。通过设计多动作分支奖励估计和策略加权奖励聚合方法,本研究旨在提高多智能体强化学习(MARL)的有效性和稳定性。 ... [详细]
  • 阿里飞猪旅行搜索技术的革新与实践
    本文由林睿(阿里飞猪)分享,经杜正海、Hoh编辑整理,并由DataFunTalk平台发布。文章探讨了旅行搜索技术从满足基本需求到集成高级功能的发展历程,特别是在阿里飞猪平台上的应用与创新。 ... [详细]
  • 自SQL Server 2005以来,微软的这款数据库产品逐渐崭露头角,成为企业级应用中的佼佼者。本文将探讨SQL Server 2008的革新之处及其对企业级数据库市场的影响。 ... [详细]
author-avatar
此女人不嫁_
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有